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Localization properties of the anomalous diffusion phase in the directed trap model
and in the Sinai diffusion with a bias

Cécile Monthus
Service de Physique The´orique, Unitéde Recherche Associe´e au CNRS, DSM/CEA Saclay, 91191 Gif-sur-Yvette, France

~Received 11 December 2002; published 21 April 2003!

We study the localization properties of the anomalous diffusion phasex;tm with 0,m,1, which exists
both in the Sinai diffusion with a small bias, and in the related directed trap model presenting a broad
distribution of trapping timesp(t);1/t11m. Our starting point is the real space renormalization method, in
which the whole thermal packet is considered to be in the same renormalized valley at large time: this
assumption is asymptotically exact only in the limit of vanishing biasm→0 and corresponds to the Golosov
localization. For finitem, we thus generalize the usual real space renormalization method to allow for the
spreading of the thermal packet over many renormalized valleys. Our construction allows one to compute exact
series expansions inm for all observables: to compute observables at ordermn, it is sufficient to consider in
each sample a spreading of the thermal packet onto at most (11n) traps. So our approach provides a
description of the structure of the thermal packet sample by sample, and a full statistical characterization of the
important traps at a given order inm. For the directed trap model, we show explicitly up to orderm2 how to
recover the exact expressions for the diffusion front, the thermal width, and the localization parameterY2. We
then use our method to derive exact results for the localization parametersYk for arbitraryk, the correlation
function of two particles, and the generating function of thermal cumulants. We then explain how these results
apply to the Sinai diffusion with bias by deriving the quantitative mapping between the large-scale renormal-
ized descriptions of the two models. Finally we study the internal structure of the effective ‘‘traps’’ for the Sinai
model via path-integral methods.

DOI: 10.1103/PhysRevE.67.046109 PACS number~s!: 64.60.Ak
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I. INTRODUCTION

The motivation to study the Sinai model@1# has two ori-
gins. On one hand, the Sinai model represents a ‘‘toy’’ d
ordered system, in which many properties that exist in m
complex systems can be studied exactly, such as aging
havior @2,3#, persistence exponents@2,4#, the decoupling of
the dynamics into fast degrees of freedom, which rapi
reach local equilibrium and a slow nonequilibrium part go
erned by metastable states@5#, and some chaos and rejuv
nation effects@6#. On the other hand, the Sinai model direc
appears in various specific systems ranging from the dyn
ics of domain walls in the random field Ising chain@7,8# to
the unzipping transition in DNA@9#. It is thus interesting to
obtain exact detailed information for various observables
the Sinai model.

One of the most important properties of the symme
Sinai diffusion is the following localization phenomenon d
covered by Golosov@10#: all the thermal trajectories startin
from the same initial condition in the same sample rem
within a finite distance of each other even in the limit
infinite time. In particular, in a given sample, for a give
initial condition, the rescaled positionX5x(t)/(ln t)2 is de-
terministic, and it is only after averaging over the sampl
that X is distributed with the Kesten distribution@2,10,11#.
The physical picture is that the particle is at timet near the
bottom of the deepest valley it has been able to reach. Th
why the real space renormalization group method, first in
duced in the field of random quantum spin chains@12,13#, is
so well suited to study the symmetric Sinai diffusion@2#.
Recently@5#, we have studied in more detail the localizatio
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properties by computing the infinite-time limit of the loca
ization parameters, which represent the disorder average
the probabilities thatk independent particles in the sam
sample starting from the same initial condition are at
same place at timet and of the correlation functionC( l ,t),
which represents the disorder average of the probability
two independent particles in the same sample starting f
the same initial condition are at a distancel from each other
at time t. We have moreover shown@5# that the the infinite-
time limit of the localization parameters and of the corre
tion function exactly coincide with the corresponding eq
librium observables in a Brownian potential in th
thermodynamic limit.

A natural question is thus: do some of these localizat
properties survive in the presence of a small bias?

A. Sinai model with bias

The Sinai model in the presence of a constant biasF0
.0 can be studied in a continuum version via the followi
Langevin equation@14#:

dx

dt
5F02U8„x~ t !…1h~ t !, ~1!

whereh(t) is the usual thermal noise

^h~ t !h~ t8!&52Td~ t2t8!, ~2!

and whereU(x) is a Brownian random potential representin
the disordered landscape,

@U~x!2U~y!#252sd~x2y!. ~3!
©2003 The American Physical Society09-1
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Equivalently, the model may be defined by the Fokk
Planck equation in a given sample$U(x)% for the probability
distributionP(x,tux0,0),

] tP~x,tux0,0!5]x@T]x1U8~x!2F0#P~x,tux0,0!. ~4!

In the biased caseF0.0, the diffusion becomes transien
and there are dynamic phase transitions@14–16# as F0
grows, in terms of the dimensionless parameter

m5
F0T

s
. ~5!

For 0,m,1, the mean position of the particle presents
anomalous behavior@14–16#

^x~ t !& }
t→`

tm, ~6!

whereas form.1, there is a finite velocitŷx(t)&;V(m)t.
For the anomalous diffusion phase, the exact diffusion fr
is given in terms of Le´vy stable distributions@14,15,17,18#:
we refer the reader to Appendix for the definition and pro
erties of these Le´vy fronts.

B. Directed trap model

It has been suggested in Ref.@14# that at large time, the
physics of the Sinai model with bias is actually equivalent
a simple directed trap model defined by the master equa
@19#

dPt~n!

dt
52

Pt~n!

tn
1

Pt~n21!

tn21
, ~7!

with the initial conditionPt50(n)5dn,0 , and where the trap
ping times are independent random variables distributed w
a law presenting the algebraic decay

q~t! }
t→`

1

t11m
. ~8!

So here the random environment consists of the realiza
of the trapping times$t0 ,t1 ,t2 , . . . %. Given this random
environment, a directed random walk is defined by the
quence of the sojourn times (t0 ,t1 , . . . ), where the sojourn
type t i is a random variable distributed with an exponent
distribution of meant i ,

f t i
~ t i !5

1

t i
e2t i /t i. ~9!

The anomalous diffusion phase 0,m,1 then corre-
sponds to the phase where the mean trapping time^t&
5*dttq(t) is infinite. The corresponding diffusion front i
also a Lévy diffusion front ~see Appendix A! as for the bi-
ased Sinai diffusion discussed above. For simplicity in t
paper, we choose the normalization of the algebraic tail to
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q~t! .
t→`

m

t11m
. ~10!

It is clear that this choice simply amounts to a rescaling oft.
The presence of the large algebraic decay in the effec

trapping-time distribution~8! for the biased Sinai diffusion
may be understood from the real space renormalization
proach in relation with the distribution of the barriers again
the drift in the renormalized landscape at scaleG @2#:

PG~F !5u~F2G!2de22d(F2G), ~11!

where 2d5F0 /s. The trapping timet;ebF is then distrib-
uted with the power law~8! with the correspondencem
52dT.

C. Previous results for the localization in the directed trap
model

For the directed trap model, the existing results on
extension of the thermal packet are twofold. On one ha
the thermal width has been exactly computed in Ref.@19#
@Eq. ~26!#,

^Dn2~ t !&[ (
n50

1`

n2Pt~n!2F (
n50

1`

nPt~n!G2

5
1

G~2m! S sinpm

pm D 3

I ~m!t2m, ~12!

where the integralI (m) of Eq. ~26! in Ref. @19# can be re-
written after a change of variables as

I ~m!5E
0

1

dz
~11z!zm~12z!2m

z2m1212 cospmzm1111
. ~13!

The result~12! shows that the the thermal packet is spre
over a length of ordertm.

On the other hand, the infinite-time limit of the localiza
tion parameter fork52 has been exactly computed in Re
@20#: their result~24! may be rewritten after a deformation o
the contour in the complex plane as

Y2~m![ lim
t→`

(
n50

1`

@Pt~n!#25E
2p

1p du

2p

eium2eiu

12eiu(m11)
.

~14!

This expression shows thatY2 is finite in the full domain 0
<m,1 and vanishes in the limitm51. How can this prop-
erty coexist with the result~12! for the thermal width? The
numerical simulations of Ref.@20# show that for a single
sample at fixedt, the probability distributionPt(n) is made
out of a few sharp peaks that have a finite weight but that
at a distance of ordertm. This explains why at the same time
there is a finite probability to find two particles at the sam
site even at infinite time, even if the thermal width diverg
as t2m at large time.
9-2
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D. Goal and results

The aim of this paper is to provide a probabilistic descr
tion, sample by sample, of the localization properties of
directed trap model and of the Sinai diffusion with bias in t
anomalous diffusion phase 0,m,1. More explicitly, the
question we address is the following: in a given sample r
resenting a particular realization of the random environme
what is the probability distribution for the position of th
random walker?

We will need to generalize the usual real space renorm
ization group~RSRG! method@2# to allow the spreading o
the thermal packet over many renormalized valleys. Inde
in the usual RSRG method, the whole thermal packet is c
sidered to be in the same renormalized valley at a large ti
this assumption is asymptotically exact in the symmetric
nai model and actually corresponds to the Golosov local
tion @5,10# discussed above; it is also valid for the bias
case but only in the double limit of vanishing biasm→0 and
large time with the fixed parameterg5mT ln t @2#. We will
thus define explicit rules for the RSRG approach with m
tiple valley occupancies and show that our construction
lows one to compute exact expansions inm for all observ-
ables.

1. Summary of results for the directed trap model

For the directed trap model, we explicitly show how
recover in a unified framework the expansions up to orderm2

of the exact results for the observables discussed above
~a! Expansion inm of the Lévy diffusion front for the

rescaled variableX5x/tm ~see Appendix A!,

g~X!5e2X1mgE~X21!e2X1m2F S gE
2

2
1

p2

12D
1XS p2

12
23

gE
2

2 D 1X2S gE
2

2
2

p2

12D Ge2X1O~m3!.

~15!

~b! Expansion inm of the thermal width@from Eqs.~12!
and ~13!#

D~m![ lim
t→`

^Dn2~ t !&

t2m
5m~2 ln 2!

1m2F2
p2

6
12 ln 2~ ln 22212gE!G1O~m3!.

~16!

~c! Expansion inm of the localization parameterY2 @from
Eq. ~14!#,

Y2~m!512m~2 ln 2!1m2S 4 ln 22
p2

6 D1O~m3!.

~17!

These comparisons with exact results show that our g
eralized RSRG procedure is exact order by order inm: to
compute observables at ordermn, it is sufficient to consider a
04610
-
e

-
t,

l-

d,
n-
e:
i-
-

-
l-

n-

spreading of the thermal packet onto at most (11n) traps.
So our description provides a description of the structure
the thermal packet sample by sample, and a full statist
characterization of the important traps at a given order inm.

We then use our procedure to derive other exact resu
We obtain the expansion inm of the localization paramete
Yk for arbitraryk up to orderm2

Yk~m!511mE
0

1`dv
v

@e2kv1~12e2v!k21#

1m2E
0

1`dv
v E

v

1`dw

w
@p2

k~v,w!1p2
k~w,v !

12p3
k~v,w!112e2kv22~12e2v!k2~12e2w!k#

1O~m3!, ~18!

where the functionsp2 andp3 are defined in Eq.~89!.
We obtain that the correlation function of two particle

averages over the disorder reads

C~ l ,t ![ (
n50

1`

(
m50

1`

P~n,tu0,0!P~m,tu0,0!d l ,un2mu

.
t→`

Y2~m!d l ,01
1

tm
CmS l

tmD , ~19!

where the weight of thed peak at the origin corresponds as
should to the localization parameterY2 ~17!, whereas the
second part presents a scaling form of the variablel5 l /tm.
We obtain the following expansion for the scaling functio
Cm :

Cm~l!5e2lXm~2 ln 2!1m2Fp2

3
2 ln 2~41 ln 21gE!

1lS 2
p2

6
1 ln 2~ ln 21gE! D G1O~m3! C. ~20!

We also consider the generating function of rescaled th
mal cumulantsck(m),

Zm~s![ ln^e2s(n/tm) &5 (
k51

1`
~2s!k

k!
ck~m!. ~21!

The first one simply represents the mean value that can
obtained from the diffusion front~15!

c1~m!5
^n&

tm
5E

0

1`

dXX fm
trap~X!. ~22!

The second onec2(m) represents the thermal widthD(m)
~16!. We obtain the expansion at first order inm of the gen-
erating function
9-3
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Zm~s!52s1mE
0

1`

dYe2YF E
0

1dv
v

ln@e2v1~12e2v!e2sY#

1E
1

1`dv
v

ln@e2vesY1~12e2v!#G1O~m2!. ~23!

The series expansion ins then yields all thermal cumulants a
first order inm. In particular, the first terms beyond the me
valuec1(m) and the thermal widthc2(m) read

c3~m![ lim
t→`

^n3&23^n2&^n&12^n&3

t3m

5m6~2 ln 323 ln 2!1O~m2!, ~24!

c4~m![ lim
t→`

^n4&24^n3&^n&23^n2&2112̂ n2&^n&226^n&4

t2m

5m24~19 ln 2212 ln 3!1O~m2!. ~25!

2. Summary of results for the biased Sinai model

We will derive an exact quantitative mapping between
renormalized descriptions of the trap model and the bia
Sinai diffusion with bias. As a consequence, in the wh
anomalous diffusion phase 0,m,1, all properties of the
directed trap models that concern the rescaled quantitX
5n/tm are exactly the same for the Sinai model with bias
terms of the rescaled quantity

X5
xsb2

G2~m!~ ts2b3!m
. ~26!

This relation was already conjectured in Ref.@14# for the
special case of the averaged diffusion fronts of the two m
els ~see Appendix A!. In particular, the thermal width of the
Sinai model reads from the exact result~12! of Ref. @19#,

^Dx2~ t !&

t2m
5

~s2b3!2m

s2b4

G4~m!

G~2m! S sinpm

pm D 3

I ~m! ~27!

5
~s2b3!2m

s2b4 H ~2 ln 2!

m3
1F2

p2

6

12 ln 2~ ln 22222gE!G 1

m2
1OS 1

m D J , ~28!

and more generally, all thermal cumulants can be obtai
from the results of the trap model~25! via the correspon-
dence~26!.

For the localization parameters, the resultYk
trap represents

for the biased Sinai model the probability to findk indepen-
dent particles at a finite distance from each other in the li
of infinite time. These particles are then distributed with t
Boltzmann distribution in an infinitely deep biased Browni
valley, leading to
04610
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Yk
sinai5Yk

trapYk
valley , ~29!

where Yk
valley , computed in Eq.~210!, is the localization

parameter fork particles at equilibrium in an infinitely dee
biased Brownian valley.

For the two-point correlation function, we obtain for th
biased Sinai model the two-scaling form

Csinai~ l ,t !5Y2
trapCvalley~ l !1

sb2

G2~m!~ ts2b3!m
Cm

3S l5
lsb2

G2~m!~ ts2b3!mD , ~30!

where the first part represents the case where the two
ticles are at a finite distance from each other at infinite tim
in which case their correlationCvalley( l ) is given by Eq.
~212!. The second part, corresponding to the cases where
two particles are in different renormalized valleys at infin
time, is exactly given by the scaling functionCm ~20! de-
scribing the long-range behavior in the trap model.

3. Organization of the paper

We first study the directed trap model: Section II prese
the usual RSRG that yields all observables in the limitm
→0; in Sec. III, we explain the origin of the spreading of th
thermal packet at first order inm and compute observables
this order; in Sec. IV, we study the second orderm2; in Sec.
V, we explain the structure of the set of important traps
any given ordermn.

We then turn to the biased Sinai model: in Sec. VI, w
derive the quantitative mapping between the large-sc
renormalized descriptions of the two models~the biased Si-
nai model and the directed trap model!; in Sec. VII, we
moreover characterize the internal structure of the ‘‘traps’
the biased Sinai model by computing various statistical pr
erties of infinitely biased Brownian valleys. Section VI
contains a discussion on the universality. Finally, Sec.
contains the conclusion, and some more technical details
given in the Appendixes.

II. DIRECTED TRAP MODEL IN THE LIMIT µ\0

The real space renormalization procedure for the S
model@2# can be reformulated for the directed trap model
follows. At time t, all traps with trapping timest i,t are
decimated and replaced by a ‘‘flat landscape’’ to produce
renormalized landscape at timet. We stress here that contrar
to the symmetric Sinai diffusion, the remaining traps are j
some of the initial traps, and that their trapping times ha
not been renormalized by the decimation of the small on
This nonrenormalization of the trapping times actually c
responds the biased Sinai landscape to the fact that bar
against the bias converge without rescaling to a fixed dis
bution @2#. The usual RSRG picture for the dynamics is no
very simple: the particle starting att50 in then50 trap will
be at timet in the first trap of the renormalized landscap
that is, in the first trap having a trapping time bigger thant.
9-4
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We will call this trap the main trapM. In the usual RSRG
approach, all thermal trajectories are in the same trapM. In
particular, the probability distribution in a given sample is
d function,

Pt
(0)~n!5dn,nM

~31!

and the localization is total: there are no thermal fluctuatio

@Dn2~ t !# (0)50, ~32!

and more generally, all thermal cumulants beyond the fi
one vanish; the generating function of thermal cumula
~21! simply reads

Zm
(0)~s!52s

nM̄

tm
52s. ~33!

The two-particle correlation function is ad function

C(0)~ l ,t ![ (
n50

1`

(
m50

1`

P(0)~n!P(0)~m!d l ,un2mu5d l ,0 ~34!

and the localization parameters have their maximal value

Yk
(0)~ t !51. ~35!

The corresponding averaged diffusion front is thus sim
given by the distribution of the positionn5nM of the main
trap

Pt
(0)~n!5F12E

t

1`

dtq~t!GnE
t

1`

dtq~t!, ~36!

where the first part@•••#n represents the probability that th
first n traps have trapping timest i,t, and where the last par
represents the probability that thenth trap has a trapping
time t i.t. So the scaling functiong describing the average
diffusion front at large time

Pt~n! .
t→`

1

tm
gS n

tmD ~37!

is given at this order by a simple exponential,

g(0)~X!5e2X, ~38!

which indeed coincides with the limitm→0 of the exact
Lévy front ~see Appendix A!.

So the approximation where all particles of the same th
mal packet are in the same trap is correct only in the limit
vanishingm. For finite m, we will have to allow for a pos-
sible dispersion of the thermal packet. In fact, in the lim
m→0, we have considered that the distribution of the tra
ping times was infinitely broad in the following sense:
traps with t i,t were such thatt i /t;0, whereas all traps
with t i.t were such thatt i /t;1`. For finite m, we have
to take into account that these ratios are not really zero
infinite. We will do it order by order inm.
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III. DIRECTED TRAP MODEL AT FIRST ORDER IN µ

A. Origins of the dispersion of the thermal packet at orderµ

At first order inm, we need to consider the two followin
effects~see Fig. 1!.

~a! The main trapM defined above has a trapping timetM
that is not infinite. There is a small probability (12e2t/tM)
that the particle has already escaped from this main trapM at
time t to jump into the next renormalized trap that we w
call L1 ~for large trap number 1!, which is defined as the
second trap satisfyingt i.t.

~b! The biggest trap before the main trap, which we w
call S1 ~for small trap number 1!, has a trapping timetS1

,t that is not zero and thus there is a small probabi
e2t/tS1 that the particle is still trapped inS1 at time t.

We now describe the statistical properties of these t
effects.

B. Statistical properties of the trap L 1

The joint distribution of the trapping timetM , of the po-
sition n5nM of the main trapM, and of the positionnL of
the next renormalized trapL1 reads

DM ,L1
~n,nL ;tM !5u~ t,tM !u~n,nL!

3F12E
t

1`

dtq~t!Gn

q~tM !

3F12E
t

1`

dtq~t!GnL2n21E
t

1`

dtq~t!

.
t→`

1

t2m
DM ,L1S X5

n

tm
,XL5

nL

tm
;tM D , ~39!

with the scaling function

DM ,L1
~X,XL ;tM !5u~ t,tM !u~0,X,XL!

m

tM
S t

tM
D m

e2XL.

~40!

FIG. 1. Hierarchical structure of the important traps for a p
ticle starting at the origin. The dashed line separates the ‘‘sm
traps~those having a trapping time smaller thant) from the ‘‘big’’
traps~those having a trapping time bigger thant). The first big trap
calledM is occupied with a weight of orderO(m0). The next big
trap L1 and the biggest small trapS1 beforeM are occupied with
weights of orderO(m). The third big trapL2, the biggest small trap
I 2 betweenM andL1, and the second biggest small trapS2 before
M are occupied with weights of orderO(m2).
9-5
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In particular, the distribution of the trapping timetM is
obtained, as it should, by simply normalizing the origin
distributionq(t) on the interval@ t,1`#,

qt~tM !5E dXE dXLDM ,L1
~X,XL ;tM !

5u~tM2t !
mtm

tM
11m

. ~41!

The probabilitypL1
5(12e2(t/tM)) to have already escape

from the main trap at timet and to be thus already in the tra
L1 reads after averaging over the disorder,

p̄L1
5E dtqt~t!~12e2t/t!5mE

0

1

dvvm21~12e2v! ~42!

5mE
0

1dv
v

~12e2v!1m2E
0

1dv
v

ln v~12e2v!1O~m3!,

~43!

so it is of orderm.
At this level of approximation, the diffusion front for

given sample is made out of twod distributions,

PML1

(0)1(1)~n!5e2(t/tM)dn,nM
1~12e2(t/tM)!dn,nL1

. ~44!

C. Statistical properties of the trap S1

The trapS1 has been defined as the biggest trap before
main trapM. The joint distribution of the positionn of the
main trap, the positionnS , and the trapping timetS of the
trap S1 read

DS1 ,M~nS ,n;tS!5u~ t.tS!F12E
ts

1`

dtq~t!Gn21

3q~ts!E
t

1`

dtq~t! ~45!

.
t→`

1

t2m
DS1 ,MS XS5

nS

tm
,X5

n

tm
;tSD ,

~46!

where the scaling function reads

DS1 ,M~XS ,X;tS!.u~ t.tS.1!u~X.XS.0!

3
m

tS
S t

tS
D m

e2X(t/tS)m
. ~47!

We note that here, there are correlations between the trap
time and the positions, contrary to the decoupled meas
~40! concerning the trapL1. The joint distribution of the
positions alone reads
04610
l
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S~Xs ,X!5E dtSDS1 ,M~XS ,X;tS!5
u~X.XS.0!

X
e2X,

~48!

i.e., X is distributed withP(0)5e2X ~38!, and XS is uni-
formly distributed on the interval@0,X#. The distribution of
the trapping timets alone reads

r ~tS!5E
0

1`

dXSE
XS

1`

dXDS1 ,M~XS ,X;tS!

5u~ t.tS!m
tS

m21

tm
. ~49!

The probabilitypS1
5e2t/tS to be still in the trapS1 at time

t reads after averaging over the disorder,

pS1
5̄E dtSr ~tS!e2t/tS5mE

1

1` dv

v11m
e2v ~50!

5mE
1

1`dv
v

e2v2m2E
1

1`dv
v

e2v1O~m3!, ~51!

so it is of orderm.
At this level of approximation, the probability distributio

reads

PS1M
(0)1(1)~n!5e2t/tSdn,nS1

1~12e2t/tS!dn,nM
. ~52!

We now use the statistical properties of the trapsL1 and
S1 to compute various observables at orderm.

D. Diffusion front at order µ

The correction due to the trapL1 to the diffusion front in
a given sample~44! with respect to oned function at the
zeroth order~31! reads

PML1

(1) ~n![PML1

(0)1(1)~n!2P(0)~n!

5~12e2t/tM!~dn,nL1
2dn,nM

!. ~53!

The average over the samples, that is, over the posit
(nM ,nL) and the trapping timet with the measure~40!
yields the correction to the scaling function~37!,

gML1

(1) ~Y!5E dtME dXE dXLDM ,L1
~X,XL ;tM !

3~12e2t/tM!@d~Y2XL!2d~Y2X!# ~54!

5e2X~X21!mE
0

1

dvvm21~12e2v! ~55!

5e2X~X21!FmE
0

1dv
v

~12e2v!

1m2E
0

1dv
v

ln v~12e2v!1O~m3!G . ~56!

Similarly, the correction due to the trapS1 to the diffusion
front in a given sample~52! with respect to oned function at
the zeroth order~31! reads
9-6
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PS1M
(1) ~n![PS1M

(0)1(1)~n!2P(0)~n!5e2t/tS~dn,nS1
2dn,nM

!.

~57!

After averaging over the samples with the measure~47!,
we obtain the correction to the scaling function~37!,

gS1M
(1) ~Y!5E dtSE dXE dXSDS1 ,M~XS ,X;tS!

3e2t/tS@d~Y2XS!2d~Y2X!# ~58!

5mE
1

1`dv
v

e2v~12Yvm!e2Yvm
~59!

5me2X~12X!E
1

1`dv
v

e2v1m2e2X~X222X!

3E
1

1`dv
v

ln ve2v1O~m3!. ~60!

Adding these two contributions to the zeroth-order fro
~38!, we finally get

gtotal
(0)1(1)[g(0)~X!1gML1

(1) ~X!1gS1M
(1) ~X!

5e2X1e2X~X21!mgE1O~m2!, ~61!

which coincides with the expansion at orderm of the exact
Lévy front ~15!.

E. Thermal width at order µ

For a given sample, the contribution of the trapL1 to the
thermal width reads, Eq.~44!,

@^Dn2~ t !&#ML1

(1) 5^n2&2^n&2

5e2t/tM~12e2t/tM!~nL2nM !2. ~62!

Averaging over the disorder, that is, over the positions a
the trapping timet with the measure~40! yields

@D~m!#ML1

(1) 5F ^Dn2~ t !&

t2m G
ML1

(1)

52mE
0

1

dvvm21e2v~12e2v! ~63!

52mE
0

1dv
v

e2v~12e2v!

12m2E
0

1dv
v

ln ve2v~12e2v!1O~m3!. ~64!

Similarly, the contribution of the trapS1 ~52! averaged
over the samples with the measure~47! reads
04610
t

d

@D~m!#S1M
(1) 5F ^Dn2~ t !&

t2m G
S1M

(1)

5e2(t/tS)~12e2(t/ts)!
~nL2ns!

2

t2m

52mE
1

1`

dvv2123me2v~12e2v! ~65!

52mE
1

1`dv
v

e2v~12e2v!

26m2E
1

1`dv
v

ln ve2v~12e2v!1O~m3!. ~66!

Adding the two contributions finally yields

@D~m!# total
(1) 52mE

0

1`dv
v

e2v~12e2v!5m~2 ln 2! ~67!

in agreement with the exact result~16! of Ref. @19#.

F. Localization parameters at order µ

For a given sample, the contribution of the trapL1 ~44! to
the localization parameterYk representing the probability to
find k independent particles in the same trap at timet reads

@Yk#ML1

(0)1(1)~ t !5~e2t/tM!k1~12e2t/tM!k. ~68!

So after averaging over the samples, that is, over the trap
time t ~41!, the correction to the zeroth order~35! due to the
trap L1 reads

@Yk#ML1

(1) ~ t ![@Yk#ML1

(0)1(1)~ t !2Yk
(0)~ t !

5mE
0

1

dvvm21@e2kv1~12e2v!k21#. ~69!

Similarly, the correction to the zeroth order~35! due to the
trap S1 reads after averaging over the samples, that is, o
the trapping timetS ~49!,

@Yk#S1M
(1) ~ t ![@Yk#S1M

(0)1(1)~ t !2Yk
(0)~ t !

5mE
1

1`

dvv2m21@e2kv1~12e2v!k21#.

~70!

Adding these two contributions, we finally get at first o
der in m,

Yk
(0)1(1)[Yk

(0)1@Yk#ML1

(1) ~ t !1@Yk#S1M
(1) ~ t !

511mE
0

1`dv
v

@e2kv1~12e2v!k21#1O~m2!.

~71!
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For the special casek52, the result

Y2
(0)1(1)512~2 ln 2!m1O~m2! ~72!

is again in agreement with the expansion~14! of the exact
result @20#. The other first values ofk yield

Y3
(0)1(1)512~3 ln 2!m1O~m2!, ~73!

Y4
(0)1(1)512S 2 ln

32

9 Dm1O~m2!. ~74!

G. Correlation function of two particles at order µ

We now consider the correlation function of two particl
~19!. For a given sample, the contribution of the trapL1 ~44!
reads

CML1

(0)1(1)~ l ,t ![ (
n50

1`

(
m50

1`

PML1

(0)1(1)~n!PML1

(0)1(1)~m!d l ,un2mu

~75!

5@~e2t/tM!21~12e2t/tM!2#d l ,0

12e2t/tM~12e2t/tM!d l ,(nL1
2nM). ~76!

After averaging over the disorder with the measure~40!, the
e

04610
correction with respect to the zeroth order of the correlat
function ~34! reads

CML1

(1) ~ l ,t ![CML1

(0)1(1)~ l ,t !2C(0)~ l ,t !

.@Y2#ML1

(1) d l ,012m
1

tm
e2 l /tm

3E
0

1

dvvm21e2v~12e2v!. ~77!

It presents the form~19!: the weight of thed part has been
obtained in Eq.~69! and the scaling function reads

@Cm~l!#ML1
5e2l2mE

0

1

dvvm21e2v~12e2v! ~78!

5e2lF2mE
0

1dv
v

e2v~12e2v!

12m2E
0

1dv
v

ln ve2v~12e2v!1O~m3!G . ~79!

Similarly, the contribution of the trapS1 reads after aver-
aging over the samples with the measure~47!,
CS1M
(1) ~ l ,t ![CS1M

(0)1(1)2C(0)~ l ,t !5@~e2t/tS!21~12e2t/tS!221#d l ,012e2t/tS~12e2t/tS!d l ,(nM2nS1
)

.@Y2#S1M
(1) d l ,012mE

1

1`dv
v

e2v~12e2v!
1

tm
e2( l /tm)vm

. ~80!
It presents the form~19!: the weight of thed part has been
obtained in Eq.~70! and the scaling function reads

@Cm~l!#S1M52mE
1

1`dv
v

e2v~12e2v!e2lvm
~81!

5e2lF2mE
1

1`dv
v

e2v~12e2v!

22m2lE
1

1`dv
v

ln ve2v~12e2v!G . ~82!

Adding these two contributions, we finally get at first ord
in m the following correlation function:

C(0)1(1)~ l ,t !5C(0)~ l ,t !1CML1

(1) 1CS1M
(1)

.@12~2 ln 2!m1O~m2!#d l ,01
1

tm
e2 l /tm

3@~2 ln 2!m1O~m2!#. ~83!
r

H. Generating function of thermal cumulants
at first order in µ

The correction to the generating function~21! due to the
trap L1 ~44! with respect to the zeroth order~33! reads with
the measure~40!,

@Zm~s!#ML1

(1) [@Zm~s!#ML1

(0)1(1)2Zm
(0)~s!

5 ln@e2t/tM1~12e2t/tM!e2s(XL2X)#

5mE
0

1

dvvm21E
0

1`

dYe2Y

3 ln@e2v1~12e2v!e2sY#. ~84!

Similarly, the correction due to the trapS1 reads with the
measure~47!,
9-8
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@Zm~s!#S1M
(1) [@Zm~s!#S1M

(0)1(1)2Zm
(0)~s!

5 ln@e2t/tses(X2XS)1(12e2t/ts)#

5mE
1

1`dv
v E

0

1`

dYe2Yvm

3 ln@e2vesY1~12e2v!#. ~85!

The total correction at orderm thus reads

@Zm~s!# total
(1) 5@Zm~s!#ML1

(1) 1@Zm~s!#S1M
(1)

5mE
0

1`

dYe2YF E
0

1dv
v

ln@e2v1~12e2v!e2sY#

1E
1

1`dv
v

ln@e2vesY1~12e2v!#G . ~86!

We may now perform a series expansion ins and evaluate
the integrals to obtain the generating function of all therm
cumulants at first order inm,

@Zm~s!# total
(1) 52sgE1s2ln 22s3~2 ln 323 ln 2!

1s4~19 ln 2212 ln 3!1O~s5! ~87!

leading to the results~25!.

IV. DIRECTED TRAP MODEL AT ORDER µ2

A. Dispersion of the thermal packet at orderµ2

To compute observables at orderm2, we now have to
consider the possible dispersions of the thermal packet
three traps. Denoting byt1 and t2 the first two trapping
times, the occupation probabilities of the three ordered s
are given by

p1~ t;t1!5e2t/t1,

p2~ t;t1 ,t2!5
t2

t22t1
~e2t/t22e2t/t1!,

p3~ t;t1 ,t2!512
t2e2t/t22t1e2t/t1

t22t1
. ~88!

In the following, we will also use the notationsv5t/t1 , w
5t/t2:

p1~v !5e2v,

p2~v,w!5
v

v2w
~e2w2e2v!,

p3~v,w!512p1~v !2p2~v,w!. ~89!

To simplify computations later, it will be convenient to use
intermediate calculations the two following obvious prop
ties: the occupation probability of the third site is a symm
ric function of (v,w),
04610
l

er

s

-
-

p3~v,w!5p3~w,v !; ~90!

and the three occupation probabilities satisfy the normal
tion

p1~v !1p2~v,w!1p3~v,w!51. ~91!

The enumeration of the various possibilities for the thr
traps is as follows~see Fig. 1!.

1. Configurations„M ,L 1 ,L 2…

The three traps are the main trapM, the next renormalized
trap L1, introduced in Sec. III B, and the second next ren
malized trap that we callL2. The joint distribution of the
rescaled positions and trapping times read

TM ,L1 ,L2
~X,XML1

,XL2
;tM ,tL1

!

5u~ t,tM !u~ t,tL1
!u~0<X<X1<X2!

3
m

tM
S t

tM
D m m

tL1
S t

tL1
D m

e2X2. ~92!

At this level of approximation, the diffusion front is mad
out of threed peaks as

PML1L2

(0)1(1)1(2)~n!5p1~ t;tM !dm,nM
1p2~ t;tM ,tL1

!

3dm,nL1
1p3~ t;tM ,tL1

!dm,nL2
, ~93!

where the weights of the three traps are given by Eq.~88!.

2. Configurations„M ,I 2 ,L 1…

The tree traps are the main trapM, the next renormalized
trap L1, introduced in Sec. III B, and in between the inte
mediate trap that we callI 2, defined as the biggest trap in th
decimated region between M andL1. The joint distribution
of the rescaled positions and trapping times read

TM ,I 2 ,L1
~X,XI ,XL ;tM ,t I !

5u~tM.t.t I.1!u~XL.XI.X.0!

3
m

tM
S t

tM
D m m

t I
S t

t I
D m

e2Xe2(XL2X)(t/t I )
m
. ~94!

The corresponding diffusion front reads

PMI 2L1

(0)1(1)1(2)~n!5p1~ t;tM !dm,nM
1p2~ t;tM ,t I !dm,nI 2

1p3~ t;tM ,t I !dm,nL1
, ~95!

where the weights are given by Eq.~88!.

3. Configurations„S1 ,S2 ,M … and „S28 ,S1 ,M …

The tree traps are the main trapM, the trapS1 defined
before as the biggest trap beforeM, and the second bigges
trap beforeM, which we callS2 if its position is betweenS1

andM, andS28 if its position is between 0 andS1.
9-9
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For the configurations (S1 ,S2 ,M ), the joint distribution
of the rescaled positions and trapping times is given by

TS1 ,S2 ,M~X1 ,X2 ,X;tS1
,tS2

!

5u~tS2
,tS1

,t !u~0,X1,X2,X!

3
m

tS1
S t

tS1
D m m

tS2
S t

tS2
D m

e2X(t/tS2
)m

~96!

and the corresponding diffusion front reads

PS1S2M
(0)1(1)1(2)~n!5p1~ t;tS1

!dm,nS1
1p2~ t;tS1

,tS2
!dm,nS2

1p3~ t;tS1
,tS2

!dm,nM
, ~97!

where the weights are given by Eq.~88!.
For the configurations (S28 ,S1 ,M ), the joint distribution

of the rescaled positions and trapping times read

TS
28 ,S1 ,M~X2 ,X1 ,X;tS2

,tS1
!

5u~tS2
,tS1

,t !u~0,X2,X1,X!

3
m

tS1
S t

tS1
D m m

tS2
S t

tS2
D m

e2X(t/tS2
)m

~98!

and the corresponding diffusion front reads

PS
28S1M

(0)1(1)1(2)
~n!5p1~ t;tS2

!dm,nS28
1p2~ t;tS2

,tS1
!dm,nS1

1p3~ t;tS2
,tS1

!dm,nM
, ~99!

where the weights are given by Eq.~88!.

4. Configurations„S1 ,M ,L 1…

The three traps are the trapS1 introduced in Sec. III C, the
main trapM, and the next renormalized trapL1 introduced in
Sec. III B. The joint distribution of the rescaled positions a
trapping times is given by

TS1 ,M ,L1
~Xs ,X,XL ;tS ,tM !

5u~tM.t.tS.1!u~XL.X.XS.0!

3
m

tS
S t

tS
D m m

tM
S t

tM
D m

e2X(t/tS)m
e2(XL2X). ~100!

The corresponding diffusion front reads

PS1ML1

(0)1(1)1(2)~n!5p1~ t;tS1
!dm,nS1

1p2~ t;tS1
,tM !dm,nM

1p3~ t;tS1
,tM !dm,nL1

, ~101!
04610
where the weights are given by Eq.~88!.
We now use the statistical properties of these three-

configurations to compute observables at orderm2.

B. Diffusion front at order µ2

1. Contributions at order µ2 of the two-trap configurations

We have already studied the contributions of two-tr
configurations when studying the orderm. The contribution
of orderm2 of the configurationsML1 ~56! reads

gML1

(2) ~X!5m2e2X~X21!E
0

1dv
v

ln v~12e2v!. ~102!

Similarly, the contribution of orderm2 of the configurations
S1M ~60! reads

gS1M
(2) ~X!5m2e2X~X222X!E

1

1`dv
v

ln ve2v. ~103!

2. Contributions at order µ2 of the three-trap configurations

The specific contribution at orderm2 of the three-trap
configurations of typeML1L2 can be obtained by subtractin
from Eq. ~93! the two-trap configurationsML1 ~44!:

PML1L2

(2) ~n![PML1L2

(0)1(1)1(2)~n!2PML1

(0)1(1)1(2)~n!

5p3~ t;tM ,tL1
!~dm,nL2

2dm,nL1
!. ~104!

The average over the samples with the measure~92! yields
the correction of the scaling function~37!,

gML1L2
(2) ~Y!5E dXE dX1E dX2E tME tL1

3TM ,L1 ,L2
~X,XML1

,XL2
;tM ,tL1

! ~105!

p3~ t;tM ,tL1
!@d~Y2X2!2d~Y2X1!# ~106!

5e2YFY2

2
2YGm2E

0

1dv
v

3E
0

1dw

w
p3~v,w!1O~m3!. ~107!

Similarly, the specific contribution at orderm2 of the
three-trap configurations of typeMI 2L1 can be obtained by
subtracting from Eq.~95! the two-trap configurationsML1
~44!, and this yields after averaging over the samples w
the measure~94!,
PMI 2L1

(2) ~n![PMI 2L1

(0)1(1)1(2)~n!2PML1

(0)1(1)1(2)~n!5p2~ t;tM ,t I !~dm,nI 2
2dm,nL1

!. ~108!

The correction to the scaling function~37! thus reads
9-10
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gMI 2L1

(2) ~Y!5e2YFY2
Y2

2 Gm2E
0

1dv
v E

1

1`dw

w
p2~v,w!1O~m3!. ~109!

For the three-trap configurations of typeS1S2M , we have to subtract from Eq.~97! the two-trap configurationsS1M ~52!
and to average over the samples with the measure~96!

PS1S2M
(2) ~n![PS1S2M

(0)1(1)1(2)~n!2PS1M
(0)1(1)1(2)~n!5p2~ t;tS1

,tS2
!~dm,nS2

2dm,nM
!. ~110!

The correction to the scaling function~37! thus reads

gS1S2M
(2) ~Y!5e2YFY2

Y2

2 Gm2E
1

1`dv
v E

v

1`dw

w
p2~v,w!1O~m3!. ~111!

For the three-trap configurations of typeS28S1M , we have to subtract from Eq.~99! the two-trap configurationsS1M ~52!
and to average over the samples with the measure~98! as

PS
28S1M

(2)
~n![PS

28S1M
(0)1(1)1(2)

~n!2PS1M
(0)1(1)1(2)~n! ~112!

5p1~ t;tS2
!dm,nS28

1„p2~ t;tS2
,tS1

!2p2~ t;0,tS1
!…dm,nS1

1„p3~ t;tS2
,tS1

!2p3~ t;0,tS1
!…dm,nM

. ~113!

The correction to the scaling function~37! reads

gS
28S1M

(2)
~Y!5e2Y~12Y!m2E

1

1`dv
v

ln ve2v1e2YS Y2
Y2

2 Dm2E
1

1`dv
v E

1

1`dw

w
u~v,w!@p2~v,w!#1O~m3!. ~114!

For the three-trap configurations of typeS1ML1, we have to subtract from Eq.~101! the one-trap configuration~31!, and
the corrections due to the two-trap configurationsML1 ~53! andS1M ~57!, and to average over the samples with the meas
~100!,

PS1ML1

(2) ~n![PS1ML1

(0)1(1)1(2)~n!2PM
(0)~n!2PS1M

(1)1(2)~n!2PML1

(1)1(2)~n!5@p3~ t;tS1
,tM !2p3~ t;0,tM !#~dm,nL1

2dm,nM
!,

~115!

with the scaling function

gS1ML1
(2) ~Y!5e2YFY2

Y2

2 Gm2E
1

1`dw

w E
0

1dv
v

p2~v,w!1O~m3!. ~116!

The sum of all contributions of orderm2 finally reads

gtotal
(2) ~Y![gMI 2L1

(2) ~Y!1gS1ML1

(2) ~Y!1gS1S2M
(2) ~Y!1gS

28S1M
(2)

~Y!1gS1M
(2) ~Y!1gML1L2

(2) ~Y!1gML1

(2) ~Y! ~117!

5e2Y@2Y2Y2#m2E
0

1`dv
v E

v

1`dw

w
p2~v,w!

1m2e2Y~Y223Y11!F E
1

1`dv
v

ln ve2v2E
0

1dv
v

ln v~12e2v!G1O~m3!. ~118!
046109-11
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The double integral may be computed as follows:

E
0

1`dv
v E

v

1`dw

w
p2~v,w!

5E
0

1`dw

w E
0

1

dz
1

z21
~e2wz2e2w!

5E
0

1

dz
1

12z
~ ln z!52

p2

6
~119!

and we obtain the final result

gtotal
(2) ~Y!5m2e2YF S gE

2

2
1

p2

12D 1YS 23
gE

2

2
1

p2

12D
1Y2S gE

2

2
2

p2

12D G , ~120!

which coincides with the expansion~15! of the exact diffu-
sion front described in Appendix A.

C. Thermal width at order µ2

1. Contributions at order µ2 of the two-trap configurations

We have already studied the contributions of two-tr
configurations when studying the orderm. The contribution
of orderm2 of the configurationsML1 reads, Eq.~64!,
04610
@D~m!#ML1

(2) 52m2E
0

1dv
v

ln ve2v~12e2v!, ~121!

whereas the contribution of the configurationsS1M reads,
Eq. ~66!,

@D~m!#S1M
(2) 526m2E

1

1`dv
v

ln ve2v~12e2v!. ~122!

2. Contributions at order µ2 of the three-trap configurations

For a given configuration of three traps situated
(n1 ,n2 ,n3) with occupation probabilities (p1 ,p2 ,p3), the
thermal width reads

^Dn2~ t !&5p1p2~n22n1!21p1p3~n32n1!2

1p2p3~n32n2!2. ~123!

Following the procedure described above for the diffus
front, we obtain the specific contributions at orderm2 of the
various configurations as follows.

The configurations of typeML1L2 with the measure~92!
give
@D~m!#ML1L2

(2) [@D~m!#ML1L2

(1)1(2)2@D~m!#ML1

(1)1(2) ~124!

5p2~ t;tM ,tL1
!p3~ t;tM ,tL1

!@XL2
2XL1

#21p1~ t;tM !p3~ t;tM ,tL1
!@~XL2

2XM !22~XL1
2XM !2# ~125!

5m2E
0

1dv
v E

0

1dw

w
@2p2~v,w!p3~v,w!14p1~v !p3~v,w!#1O~m3!. ~126!

The configurations of typeMI 2L1 with the measure~94! give

@D~m!#MI 2L1

(2) [@D~m!#MI 2L1

(1)1(2)2@D~m!#ML1

(1)1(2) ~127!

5p2~ t;tM ,t I 2
!p3~ t;tM ,t I 2

!@XL1
2XI 2

#21p1~ t;tM !p2~ t;tM ,t I 2
!@~XI 2

2XM !22~XL1
2XM !2# ~128!

5m2E
0

1dv
v E

1

1`dw

w
@2p2~v,w!p3~v,w!24p1~v !p2~v,w!#. ~129!

The configurations of typeS1S2M with the measure~96! give

@D~m!#S1S2M
(2) [@D~m!#S1S2M

(1)1(2)2@D~m!#S1M
(1)1(2) ~130!

5p2~ t;tS1
,tS2

!p3~ t;tS1
,tS2

!@XM2XS2
#21p1~ t;tS1

!p2~ t;tS1
,tS2

!@~XS2
2XS1

!22~XM2XS1
!2# ~131!

5m2E
1

1`dv
v E

v

1`dw

w
@2p2~v,w!p3~v,w!24p1~v !p2~v,w!#. ~132!

The configurations of typeS28S1M with the measure~98! give
9-12
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@D~m!#S
28S1M

(2)
[@D~m!#S

28S1M
(1)1(2)

2@D~m!#S1M
(1)1(2) ~133!

5p1~ t;tS2
!p2~ t;tS2

,tS1
!~XS1

2XS
28
!21p1~ t;tS2

,tS1
!p3~ t;tS2

,tS1
!~XM2XS

28
!2

1@p2~ t;tS2
,tS1

!p3~ ttS2
,tS1

!2p2~ t;0,tS1
!p3~ t;0,tS1

!#~XM2XS1
!2 ~134!

5m2E
1

1`dv
v E

1

vdw

w
$2p1~v !p2~v,w!16p1~v !p3~v,w!12p2~v,w!p3~v,w!22p1~w!@12p1~w!#%. ~135!

The configurations of typeS1ML1 with the measure~100! give

@D~m!#S1ML1

(2) [@D~m!#S1ML1

(1)1(2)2@D~m!#S1M
(1)1(2)2@D~m!#ML1

(1)1(2) ~136!

5p1~ t;tS1
!p3~ t;tS1

,tM !@~XL1
2XS1

!22~XM2XS1
!2#

1@p2~ t;tS1
,tM !p3~ t;tS1

,tM !2p2~ t;0,tM !p3~ t;0,tM !#~XL1
2XM !2 ~137!

5m2E
1

1`dv
v E

0

1dw

w
$2p2~v,w!p3~v,w!14p1~v !p3~v,w!22p1~w!@12p1~w!#%. ~138!
ap

on
s

ion
Finally, the sum of all contributions at orderm2 reads

@D~m!# total
(2) [@D~m!#S

28S1M
(2)

1@D~m!#S1M
(2) 1@D~m!#S1S2M

(2)

1@D~m!#S1ML1

(2) 1@D~m!#MI 2L1

(2)

1@D~m!#ML1L2

(2) 1@D~m!#ML1

(2)

524m2E
0

1`dv
v

ln ve2v~12e2v! ~139!

1m2E
0

1`dv
v E

v

1`dw

w
@4p2~v,w!p3~v,w!

26p1~v !p2~v,w!12p1~w!p3~v,w!#

1O~m3!. ~140!

The double integral may be computed as in Eq.~119! and
yields

E
0

1`dv
v E

v

1`dw

w
@4p2~v,w!p3~v,w!26p1~v !p2~v,w!

12p1~w!p3~v,w!#52
p2

6
24 ln 2, ~141!

and thus the final result

@D~m!# total
(2) 5m2F2 ln 2~ ln 212gE!2

p2

6
24 ln 2G

~142!

coincides with the expansion of the exact result~16!.
04610
D. Localization parameters at order µ2

1. Contributions at order µ2 of the two-trap configurations

We have already studied the contributions of two-tr
configurations when studying the orderm. The contribution
of orderm2 of the configurationsML1 ~69! reads

@Yk#ML1

(2) 5m2E
0

1dv
v

ln v@e2kv1~12e2v!k21#,

~143!

whereas the contribution of orderm2 of the configurations
S1M ~70! reads

@Yk#S1M
(2) 52m2E

1

1`dv
v

ln v@e2kv1~12e2v!k21#.

~144!

2. Contributions at order µ2 of the three-trap configurations

For a given configuration of three traps with occupati
probabilities~88!, the localization parameters read in term
of the variablesv[t/t1 andw[t/t2 as

Yk5p1
k~v !1p2

k~v,w!1p3
k~v,w!. ~145!

Following the procedure described above for the diffus
front, we obtain the specific contributions at orderm2 of the
various configurations as follows.

The configurations of typeML1L2 with the measure~92!
give
9-13
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@Yk#ML1L2

(2) 5@Yk#ML1L2

(0)1(1)1(2)2@Yk#ML1

(0)1(1)1(2)

5m2E
0

1dv
v E

0

1dw

w
@p2

k~v,w!1p3
k~v,w!

2~12p1~v !!k#1O~m3!. ~146!

The configurations of typeMLI 2L1 with the measure~94!
give

@Yk#MI 2L1

(2) 5@Yk#MI 2L1

(0)1(1)1(2)2@Yk#ML1

(0)1(1)1(2) ~147!

5m2E
0

1dv
v E

1

1`dw

w
@p2

k~v,w!1p3
k~v,w!

2~12p1~v !!k#1O~m3!. ~148!

The configurations of typeS1S2M with the measure~96!
give

@Yk#S1S2M
(2) 5@Yk#S1S2M

(0)1(1)1(2)2@Yk#S1M
(0)1(1)1(2)

5m2E
1

1`dv
v E

v

1`dw

w
@p2

k~v,w!1p3
k~v,w!

2~12p1~v !!k#1O~m3!. ~149!

The configurations of typeS28S1M with the measure~98!
give

@Yk#S
28S1M

(2)
5@Yk#S

28S1M
(0)1(1)1(2)

2@Yk#S1M
(0)1(1)1(2)

5m2E
1

1`dv
v E

1

vdw

w
u~v.w!$p1

k~v !1p2
k~v,w!

1p3
k~v,w!2p1

k~w!2@12p1~w!#k%1O~m3!.

~150!

The configurations of typeS1ML1 with the measure~92!
give

@Yk#S1ML1

(2)

[@Yk#S1ML1

(0)1(1)1(2)2@Yk#
(0)2@Yk#S1M

(1)1(2)2@Yk#ML1

(1)1(2)

~151!

5m2E
1

1`dv
v E

0

1dw

w
$p2

k~v,w!1p3
k~v,w!11

2@12p1~v !#k2p1
k~w!2@12p1~w!#k%1O~m3!.

~152!

The sum of all contributions of orderm2 thus reads
04610
@Yk# total
(2) 5@Yk#MI 2L1

(2) 1@Yk#S1ML1

(2) 1@Yk#ML1L2

(2) 1@Yk#ML1

(2)

1@Yk#S1S2M
(2) 1@Yk#S

28S1M
(2)

1@Yk#S1M
(2)

5m2E
0

1`dv
v E

v

1`dw

w
$p2

k~v,w!1p2
k~w,v !

12p3
k~v,w!112p1

k~v !22@12p1~v !#k

2@12p1~w!#k%. ~153!

For the special casek52, we find

@Y2# total
(2) 5m2F4 ln 22

p2

6 G ~154!

in agreement with the expansion of the exact result~17!. For
the special casek54, we find

@Y4# total
(2) 5m2S 2

p2

6
12@21 ln 21 ln 3~ ln 3212!# D .

~155!

E. Correlation function at order µ2

1. Contributions at order µ2 of the two-trap configurations

We have already studied the contributions of two-tr
configurations when studying the orderm. The contribution
of orderm2 of the configurationsML1 ~79! reads

@Cm~l!#ML1

(2) 5e2l2m2E
0

1dv
v

ln ve2v~12e2v!, ~156!

whereas the contribution of orderm2 of the configurations
S1M ~82! reads

@Cm~l!#S1M
(2) 522m2le2lE

1

1`dv
v

ln ve2v~12e2v!.

~157!

2. Contributions at order µ2 of the three-trap configurations

For a given configuration of three traps situated
(n1 ,n2 ,n3) with occupation probabilities (p1 ,p2 ,p3), the
two-particle correlation functions reads

C~ l ,t !5~p1
21p2

21p3
2!d l ,012p1p2d l ,n22n1

12p1p3d l ,n32n1

12p2p3d l ,n32n2
. ~158!

Since the weight of thed peak is given by the localization
parameterY2 that we have already considered above, we w
consider in the following only the scaling functionCm(l)
~19!. Following the procedure described above for the dif
sion front, we will obtain the specific contributions at ord
m2.

The configurations of typeML1L2 give the specific con-
tribution at orderm2 as
9-14
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@Cm~l!#ML1L2

(2) 5@Cm~l!#ML1L2

(1)1(2)2@Cm~l!#ML1

(1)1(2)

5e2lm2E
0

1dv
v E

0

1dw

w
@2p2~v,w!p3~v,w!

22p1~v !p3~v,w!1l2p1~v !p3~v,w!#

1O~m3!. ~159!

The configurations of typeMI 2L1 give the specific contribu-
tion at orderm2 as

@Cm~l!#MI 2L1

(2) 5@Cm~l!#MI 2L1

(1)1(2)2@Cm~l!#ML1

(1)1(2)

5e2lm2E
0

1dv
v E

1

1`dw

w
@2p1~v !p2~v,w!

12p2~v,w!p3~v,w!22p1~v !p2~v,w!l#

1O~m3!. ~160!

The configurations of typeS1S2M give the specific contri-
bution at orderm2 as

@Cm~l!#S1S2M
(2) 5@Cm~l!#S1S2M

(1)1(2)2@Cm~l!#S1M
(1)1(2)

5e2lm2E
1

1`dv
v E

v

1`dw

w
@2p1~v !p2~v,w!

12p2~v,w!p3~v,w!22p1~v !p2~v,w!l#

1O~m3!. ~161!

The configurations of typeS28S1M give the specific contri-
bution at orderm2 as

@Cm~l!#S
28S1M

(2)
5@Cm~l!#S

28S1M
(1)1(2)

2@Cm~l!#S1M
(1)1(2)

5e2lm2E
1

1`dv
v E

v

1`dw

w
$2p1~w!p2~w,v !

12p2~w,v !p3~v,w!22p1~v !@12p1~v !#

12p1~w!p3~v,w!l%1O~m3!. ~162!

The configurations of typeS1ML1 give the specific contri-
bution at orderm2 as

@Cm~l!#S1ML1

(2) 5@Cm~l!#S1ML1

(1)1(2)2@Cm~l!#S1M
(1)1(2)

2@Cm~l!#ML1

(1)1(2)

5m2e2lE
0

1dv
v E

1

1`dw

w
$2p2~w,v !p3~v,w!

22p1~w!p3~w,v !22p1~v !@12p1~v !#

12p1~w!p3~v,w!l%1O~m3!. ~163!

The sum of all contributions of orderm2 reads
04610
@Cm~l!# total
(2) 5@Cm~l!#MI 2L1

(2) 1@Cm~l!#S1ML1

(2) 1@Cm~l!#S1S2M
(2)

1@Cm~l!#S
28S1M

(2)
1@Cm~l!#S1M

(2) 1@Cm~l!#ML1L2

(2)

1@Cm~l!#ML1

(2)

5m2e2lFp2

3
2 ln 2~41 ln 21gE!

1lS 2
p2

6
1 ln 2~ ln 21gE! D G . ~164!

V. HIERARCHICAL STRUCTURE OF THE IMPORTANT
TRAPS

It is now clear that the procedure we have described u
order m2 can be generalized at an arbitrary ordern: all ob-
servables at ordermn can be obtained by considering a di
persion of the thermal packet over at most (11n) traps that
have to be chosen among a certain numberVn of possible
configurations of the traps. Our aim in this section is not
pursue any further explicit computations, but to get so
insight into the set of important traps that play a role a
given ordern.

A. Set of the important traps at order n

At order n, the important traps are the main trapM; the
following n large renormalized trapsL1 , . . . ,Ln ; the n big-
gest trapsS1 , . . . ,Sn among the small traps beforeM; the
(n21) biggest trapsI 2

(1) , . . . ,I n
(1) among the small traps in

the interval betweenM and L1, the (n22) biggest traps
I 3

(2) , . . . ,I n
(2) among the small traps in the interval betwe

L1 and L2; and so on; the biggest trapI n
(n21) among the

small traps in the interval betweenLn22 andLn21.
The index at the bottom represents the order of occu

tion in m as in the Fig. 1. The total number of traps is thu

Tn511n1(
i 51

n

i 511
n~n13!

2
, ~165!

which generalizesT153 (M , S1 , L1) and T256 (M , S1 ,
S2 identified withS28 , L1 , L2).

B. Set of the important configurations at order n

With theseTn traps, we have now to construct the po
sibleVn configurations of (11n) traps that are ordered by i
positions, and that contribute up to ordermn. We have

Vn5Vn211vn5(
i 50

n

v i , ~166!

wherevn represents the number of configurations that be
to contribute at ordern.

We may now decompose

vn5an
(Ln)

1an
(Ln21)

1•••1an
(L1)

1an
M , ~167!
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wherean
(L j ) is the number of configurations that containL j as

the rightmost trap. Forj 5n, there is onlyan
(Ln)

51 configu-
ration ML1L2•••Ln , whereas forj 50,

an
M5n!, ~168!

since we have to order in space then trapsS1 , . . . ,Sn before
M. More generally, at orderj, to construct the configuration
of (n11) traps containingML1•••L j , which represent (j
11) fixed traps, we have to choose (n2 j ) traps among the
( j 11) available intervals and to count the possible po
tional orders in each interval as

an
L j5 (

p150

1`

••• (
pj 1150

1`

dS (
i 51

j 11

pi5n2 j D p1! •••pj 11!

~169!

The final result is thus that the number of new configu
tions that appear at ordern reads

vn5(
j 50

n F (
p150

1`

••• (
pj 1150

1`

dS (
i 51

j 11

pi5n2 j D p1! •••pj 11! G ,

~170!

which generalizes what we have found before for the low
orders v051 (M ), v152 (S1M and ML1), and v255
(S1S2M , S28S1M , MI 1L1 , ML1L2, andS1ML1).

VI. QUANTITATIVE MAPPING BETWEEN THE BIASED
SINAI DIFFUSION AND THE DIRECTED TRAP

MODEL

A. Renormalized landscape for the biased Brownian motion

The real space renormalization group~RSRG! method can
also be applied to the biased Brownian landscape@2,13#. The
distributions of the barriersF5G1j in the renormalized
landscape at scaleG are given by@2,13#

PG
1~j!5

2d

e2dG21
expS 2j

2d

e2dG21
D .

2d

e2dG
expS 2j

2d

e2dGD ,

~171!

PG
2~j!5

2d

12e22dG
expS 2j

2d

12e22dGD .2de2j2d,

~172!

where the parameter 2d reads in terms of the notations~1,5!

2d[
m

T
5

F0

s
. ~173!

As a consequence, the distributionPG
2(j) of barriers

against the bias can be considered as infinitely large onl
the limit of vanishing biasd→0. It is only in this limit that
all particles of the same thermal packet remain in the sa
renormalized valley asymptotically.
04610
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B. Trapping time of a renormalized valley of barrier G

Let us now recall a standard result for one-dimensio
Fokker-Planck equation@21#: for a particle diffusing in a
potentialU(x) on a interval@a,b# with reflecting condition
at a, the exit time defined as the first-passage timeu(x) at
the pointb for a particle starting atxP(a,b) at timet50 can
be studied for an arbitrary potentialU(x): the moments

un~x![^@u~x!#n& ~174!

are given by the recurrence

un~x!5bE
x

b

dyebU(y)E
a

y

dze2bU(z)@nun21~z!#, ~175!

with the initial conditionun50(x)51. In particular, the first
moment reads

u1~x!5bE
x

b

dyebU(y)E
a

y

dze2bU(z). ~176!

For the biased Brownian landscape, the exit time ove
barrierG when starting at the bottom of a renormalized v
ley that we choose as the origin can be obtained~see Fig. 2!
by choosinga at the heightG on the renormalized descend
ing bond on the left andb at a potentialG after the top of the
barrierG. It seems that usually@21# one choosesb exactly at
the top of the barrier to derive the Arrhenius factor, but w
think that to obtain the correct prefactor, one has to choosb
on the descending potentialafter the top to be sure that th
particle will not return in the trap where it started. Indee
when the particle sits just on the top, there is a finite pro
ability to return to its starting trap, which is, for instance,
probability 1/2 for a potential that is symmetric around
top. So for a given realizationV of a renormalized valley, the
first moment of the escape time reads

u1$V%5bE
0

b

dyebV(y)F E
a

0

dze2bV(z)1E
0

y

dze2bV(z)G ,
~177!

FIG. 2. Computation of the escape time from a renormaliz
valley of barrierG: we consider the first-passage time atb for a
particle starting at 0. The double integral~176! is dominated by the
Arrhenius factorebG, and the prefactor is the product of two part
tion functions:ZV represents the partition function of the bottom
the valley andZB represents the partition function of the inver
potential2V near the top of the barrierG.
9-16
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where the biased Brownian potentialV(x)52F0x1U(x)
satisfies the constraints of a renormalized valley at scalG
~see Fig. 2!: it starts atV(0)5e, it then evolves on each sid
x.0 andx,0 in the presence of absorbing boundaries a
and G, and is conditioned to finish atV5G and not atV
50. On the negative side,x5a is the random position
where the potential first hitG. On the positive side, after th
random positionl G where the potential first hitG, the poten-
tial again evolves in the presence of absorbing boundarie
0 andG, and is conditioned to finish atV50 at some ran-
dom position calledb, and not atV5G.

As usual for the problem of escape over a large barr
the double integral~177! is dominated by the saddleV(y) is
maximal and whereV(z) is minimal. For a renormalized
valley ~see Fig. 2!, these regions arey; l G

(1) , whereV(y)
;G and z;0, whereV(z);0. This saddle-point analysi
yields the following leading behavior:

u1$V%.G→`t0~V!ebG. ~178!

The prefactor is simply given by the product

t0~V!5bZBZV , ~179!

where ZV is the partition function of the infinitely dee
renormalized valley,

ZV5 lim
G→`

S E
0

l G
(2)

dze2bV2(z)1E
0

l G
(1)

dze2bV1(z)D ,

~180!

where the random potentials

V1~x!52F0x1U1~x!, ~181!

V2~x!5F0x1U2~x! ~182!

are defined in terms of two independent Brownian trajec
riesU1(x) andU2(x) ~3! starting atV1(0)5e5V2(0). The
potentials V6(x) evolves in the presence of absorbin
boundaries at 0 andG, and are conditioned to finish atV
5G and not atV50. l G

(1) and l G
(2) are the random times

whereV6 , respectively, first hitV5G.
Similarly, the factorZB is the partition function of an

independent infinitely deep renormalized valley, which re
resents what happens in the vicinity of the top of the bar
G when considered with the changeV→2V to transform it
in a valley ~see Fig. 2!. For the biased Brownian landscap
considered here, by symmetry,ZB is simply an independen
realization of the variableZV .

The same saddle-point analysis may be applied to hig
moments given by the recurrence~175! to obtain

un$V% .
G→`

n! „t0~V!ebG
…

n. ~183!

So for a given renormalized valley of barrierG, the escape
time t is distributed exponentially as in the trap model as
04610
0

at

r,

-

-
r

er

f u1$V%~ t !5
1

u1$V%
e2t/u1$V%, ~184!

where the trapping timeu1$V% ~178! depends mostly on the
barrierG via the usual Arrhenius factorebG, but also on the
details of the structure of the valley near the bottom and n
the top via the prefactor~179!.

C. Distribution of the trapping time of renormalized valleys

We are now interested in the distribution of the trappi
time u1$V% over the ensemble of renormalized valleys exi
ing in the renormalized landscape at scaleG. The distribu-
tion of the barriers is given by Eq.~172!. So we have to
study the statistics of the prefactor~179!.

It is more convenient to work with dimensionless quan
ties by rewriting the partition functions asZV5z1 /(sb2),
ZB5z2 /(sb2) so that

t0~V!5
ebG

s2b3
z1z2 , ~185!

where z1 and z2 are independent random variables who
probability distributionP(z) is characterized in Appendix B
by its Laplace transform

E
0

1`

dze2szP~z!5F 1

G~11m!

~As!m

I m~2As!
G 2

, ~186!

whereI m is the Bessel function of indexm. In the renormal-
ized landscape at scaleG, the probability distribution of the
trapping timet of the renormalized valleys thus reads, usi
Eq. ~172!,

PG~t!5E
0

1`

dj2de22djE
0

1`

dz1P~z1!E
0

1`

dz2P~z2!

3dF t2
eb(G1j)

s2b3
z1z2G ~187!

5
m

t S ebG

s2b3t
D mE

0

1`

dz1z1
mP~z1!E

0

1`

dz2~z2!mP~z2!.

~188!

So we have to compute the noninteger moment of orderm of
the variablez. Using the integral representation valid for
,m,1,

zm5
m

G~12m!
E

0

1`

dss212m~12e2sz!, ~189!

we obtain the moment from the Laplace transform~186!

E
0

1`

dzzmP~z!5
m

G~12m!
E

0

1`

dss212m

3S 12F 1

G~11m!

~As!m

I m~2As!
G 2D ~190!
9-17
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5
2m4m

G~12m!
E

0

1`

dw

3Fw2122m2
1

G2~11m!4mwIm
2 ~w!

G . ~191!

Using the Wronskian property of Bessel functions, and th
series expansion at small argument, we finally get

E
0

1`

dzzmP~z!

5
1

G~12m!
lim
a→0

F S a

2D 22m

2
2m

G2~11m!

Km~a!

I m~a! G
5

1

G~11m!
. ~192!

The final result is thus that the distribution of trapping timet
of the renormalized valleys existing at scaleG reads, Eq.
~188!,

PG~t!5
m

t S ebG

s2b3t
D m

1

G2~11m!
. ~193!

D. Precise choice of the renormalization scaleG as a function
of time

We have seen in the trap model that the distribution
renormalized traps att reads, Eq.~41!,

qt~t!5u~ t,t!
m

t S t

t D m

. ~194!

To make it exactly coincide with the distribution~193! of the
biased Sinai model, we have to choose the renormal
scaleG of the landscape to be the following function of tim

G~ t !5T ln$ts2b3@G2~11m!#1/m%. ~195!

The RSRG method@2# gives that the distribution of the
length l 1 of the descending renormalized bonds is sim
exponential in the limitG→`:

PG~ l 1!5
1

bG
e2 l 1 /bG, ~196!

where the mean length reads

bG5
1

s~2d!2
e2dG5

1

sb2m2
e2dG, ~197!

so that it reads as a function of time~195! as

b~ t !5bG(t)5
G2~11m!

sb2m2
@ ts2b3#m5

G2~m!

sb2
@ ts2b3#m.

~198!
04610
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This length scaleb(t) exactly corresponds to the rati
tmctrap(m)/csinai(m) of the constants appearing in the exa
diffusion front of the two models~A24!.

E. Usual RSRG in the limit µ\0

It has been shown in Ref.@2# that the ‘‘effective dynam-
ics,’’ where at timet, the particle is typically at timet around
the minimum of the renormalized valley containing the in
tial condition, is sufficient in the double limitt→` d→0
with

g[dG~ t ! ~199!

fixed andX5x/G2(t) fixed.
The limit g→0 corresponds to the symmetric Sinai diffu

sion, whereas in the limitg→`, the model becomes directe
at large scale and the diffusion front converges towards@2#

P~x,tu0,0! .
g→`

u~x!
1

b~ t !
e2x/b(t), ~200!

whereb(t) represents the mean length of renormalized
scending bonds~198!. This limit actually corresponds to th
limit m→0 of the exact Le´vy front @14,17,18# as described in
Appendix.

F. Spreading of the thermal packet over
many renormalized valleys

The renormalized valleys of the Sinai model with bias a
the analog of the traps in the directed model~see Fig. 3!. For
m→0, the bottom of the renormalized valley containing t
origin described above, Eq.~200! is the analog of the main
trap M described in Sec. II.

At first order inm, as in Sec. III A, there are the following
two effects.

Next renormalized valley L1. The main renormalized val
ley M at scaleG(t) has a trapping timetM that is distributed

FIG. 3. Hierarchical structure of the important valleys for
particle starting at the origin. The barriers against the bias, wh
are emphasized by the straight lines correspond to the depths o
trap model represented in Fig. 1. The bottomM of the renormalized
valley that contains the origin at scaleG is occupied with a weight
O(m0). The bottomL1 of the next renormalized valley and th
bottom S1 of the biggest subvalley beforeM are occupied with
weightsO(m). The next-nearest renormalized valleyL2, the big-
gest subvalleyI 2 betweenM and L1, and the second biggest sub
valley S2 beforeM are occupied with weights of orderO(m2).
9-18
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as in the directed trap model~41!, since we have defined th
relationG(t) ~195! by identifying the trapping-time distribu
tions of the two models. So there is a small probability
2e2t/tM) that the particle has already escaped from t
main renormalizedM at time t to jump into the next renor-
malized valleyL1.

Moreover, the RSRG approach@2# yields that the joint
distribution of the trapping timetM and of the positionsxM
andxL of the bottoms of the main renormalized valley and
the the next renormalized valleyL1 reads

DM ,L1
~x,xL ;tM !5u~ t,tM !u~0,x,xL!

3
mtm

tM
11m

1

b2~ t !
e2x/b(t)e2(xL2x)/b(t) ~201!

5u~ t,tM !u~0,x,xL!

3
mtm

tM
11m

1

b2~ t !
e2xL /b(t), ~202!

which is the analog of Eq.~39!. The only change is in the
prefactor in front oftm in the scaleb(t) ~198!.

Last decimated renormalized valley S1. The last deci-
mated barrier against the bias inside the main renormal
valley between the origin and the bottom defines the
decimated subvalleyS1: it has a trapping timetS1

,t that is

not zero and thus there is a small probabilitye2t/tS1 that the
particle is still trapped in the subvalleyS1 at time t.

Moreover, the RSRG approach@2# yields that the joint
distribution of the trapping timetS and of the positionsxS
andx of the bottoms of the last decimated valleyS1 and of
the the main renormalized valleyM reads

DS1 ,M~xS ,x;tS!5u~ t.tS!u~0,xS,x!

3
m

tS

1

b~ t !b~tS!
e2x/b(tS), ~203!

which is the analog of Eq.~46!. The only change is again in
the prefactor in the scaleb(t) ~198!.

It is clear that this analysis may be generalized to furt
orders inm.

G. Conclusion: Equivalence of the two large-scale
renormalized descriptions

The statistical properties of the spreading of the therm
packet over many renormalized valleys and subvalleys in
the main one are thus exactly the same as in the directed
model discussed in details in previous sections. In particu
the localization parametersYk of the trap model represen
coarse-grained localization parameters for the biased S
diffusion: ‘‘at the same position’’ in the trap model mea
‘‘at a finite distance around the bottom of the same renorm
ized valley’’ for the biased Sinai diffusion. As a consequen
for all rescaled quantitiesx/tm, the results are exactly th
same up to the global prefactor in the scaleb(t) ~198!: this
04610
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was already known for the averaged diffusion front~see Ap-
pendix A!, but this also holds for the thermal width~28!, for
all other rescaled thermal cumulants~25!, and for the long-
range part of the two-point correlation function~30!.

The difference of the Sinai model with respect to the
rected trap model is thus the internal structure of a renorm
ized valley that induces a dispersion over finite distances
the particles that are in the same renormalized valley.
now study the statistical properties of the biased Brown
valleys.

VII. INTERNAL STRUCTURE OF THE TRAPS IN THE
BIASED SINAI DIFFUSION

A. Probability distribution inside a renormalized valley

The probability distribution of particles inside the sam
renormalized valley can be obtained by generalizing the
proach of the Sinai symmetric case@5#: for each realization
of a renormalized valley, it is given by the Boltzmann dist
bution on this valley. So asymptotically ast→`, the prob-
ability distribution of the distancey to the bottom of the
valley averaged over the environment reads

PV~y.0!

5 lim
G→`K e2bV1(y)

E
0

l G
(1)

dxe2bV1(x)1E
0

l G
(2)

dxe2bV2(x)L
$V1%,$V2%

,

PV~y,0!

5 lim
G→`K e2bV2(uyu)

E
0

l G
(1)

dxe2bV1(x)1E
0

l G
(2)

dxe2bV2(x)L
$V1%,$V2%

,

~204!

where the random potentialsV6 satisfy the same condition
as in Eq.~182!.

The computation of the functionals~204! is given in Ap-
pendix B. It yields the nonintuitive result that the probabili
distributionPV(y) is actually symmetric iny→2y. The res-
toration of this symmetry comes from the conditioning of t
biased random walk to reachG on each side. Its Laplace
transform reads, Eq.~A17!,

P̂V~p![E
0

1`

due2pyP̂V~y!

5
1

G2~11m!
E

0

`

ds
S s

2D 2m21

I m~s!I n~s!
E

0

s

dzzIn~z!

3FKm~z!2
Km~s!

I m~s!
I m~z!G , ~205!

where the only factor containing the Laplace parameter is
index
9-19
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n[Am21
4T2p

s
5m1

2T2p

sm
1O~p2!. ~206!

For m.0, the series expansion in the Laplace parameterp is
thus regular leading to

P̂V~p50!5
1

2
2

2T2p

ms
D~m!1•••. ~207!

All moments are thus finite, contrary to the symmetric ca
m50 @5#, where the behavior as (12Apc1•••) corre-
04610
e

sponds to the algebraic decay as 1/y3/2. So in the biased case
the distribution inside a renormalized valley is very narro
contrary to the symmetric case.

B. Localization parameters inside a renormalized valley

For k particles that are in the same renormalized vall
the localization parameters may be computed as an ave
of the kth power of the local Boltzmann weight over th
infinitely deep biased Brownian valleys~182!. Generalizing
the approach of Ref.@5# to the biased case, we have
ds
~Yk!valley (
e56

E
0

1`

dyK S e2bVe(uyu)

E
0

1`

dxe2bV1(x)1E
0

1`

dxe2bV2(x)D kL
$V1 ,V2%

~208!

5 (
e56

1

G~k!
E

0

1`

dqqk21^e2q*0
1`dxe2bV2e(x)

&K E
0

1`

dye2kbVe(y)e2q*0
1`dxe2bVe(x)L . ~209!

Using the results~A17! of the Appendix, we finally get

~Yk!valley5
2

G~k!G2~11m!
S sb2

4 D k21E
0

1`

ds
S s

2D 2m21

I m
2 ~s!

E
0

s

dzz2k21I m~z!FKm~z!2
Km~s!

I m~s!
I m~z!G . ~210!

C. Correlation function inside a renormalized valley

The correlation function of two particles at Boltzmann equilibrium in an infinitely deep biased Brownian valley rea

Cvalley~ l .0!52 (
e56

E
0

`

dyK e2bVe(y)2bVe(y1 l )

S E
0

`

dxe2bV1(x)1E
0

`

dxe2bV2(x)D 2L
12E

0

l

dyK e2bV1(y)2bV2( l 2y)

S E
0

1`

dxe2bV1(x)1E
0

1`

dxe2bV2(x)D 2L , ~211!

where the averagê•••& is over the realizations (V1 ,V2) satisfying Eq.~182!.
Using the explicit results of Appendix A, we finally get

Ĉvalley~p!5
8

G2~11m!
E

0

`ds

s

S s

2D 2m

I m
2 ~s!

E
0

s

dz1z1I m~z1!E
0

s

dz2z2S Km~z2!2
Km~s!

I m~s!
I m~z2! D Fu~z22z1!I n~z1!

3S Kn~z2!2
Kn~s!

I n~s!
I n~z2! D1u~z12z2!I n~z2!S Kn~z1!2

Kn~s!

I n~s!
I n~z1! D G1

4

G2~11m!

3E
0

`ds

s

S s

2D 2m

I n
2~s!

F E
0

s

dzzIn~z!S Km~z!2
Km~s!

I m~s!
I m~z! D G2

. ~212!
9-20
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VIII. DISCUSSION OF THE UNIVERSALITY

We now briefly discuss the question of the universal
The RSRG method that describes the large-scale structu
scaleG of the random potential is valid for all discrete mo
els with random forces@2#. The parameter 2d that describes
the distribution of barriers against the drift at large sc
~172! may be expressed for a discrete random force mode
the nonzero solution of the equation@2#

e22d f51, ~213!

which is known to determine the anomalous diffusion exp
nentm52dT @15,16#. So for a given value of the paramete
(2d,s), the renormalized landscape at scaleG is universal.

However, it is clear from the analysis of the escape ti
of a renormalized valley~178! that the prefactor~179! in
front of the Arrhenius factorebG is not universal: the parti-
tion functionsZV and ZB depend on the details over finit
scales of the potential near a bottom of a renormalized va
and near a top of a barrier.

So for a potential that belongs to the universality cla
(2d,s), but that is not a biased Brownian at small scales,
distribution of the trapping times in the renormalized lan
scape at scaleG reads

PG~t!5
m

t S bebG

t D m

~ Z̄V
m!~ Z̄B

m!, ~214!

so that the quantitative mapping onto the trap model~194! is
realized for the choice of the RG scaleG as a function oft
according to

G~ t !5T lnF t

b~ Z̄V
m!1/m~ Z̄B

m!1/mG , ~215!

which corresponds to the length scale

b~ t !5bG(t)5
1

sb2m2

tm

bm~ Z̄V
m!~ Z̄B

m!
. ~216!

This shows that the factorm2 is universal and comes from
the mean length of descending bonds in the renormal
landscape at large scale, whereas the factorG2(11m) of the
biased Brownian motion is not universal and comes from
probability distribution of the partition function of a biase
Brownian valley~192!. However, it is expected to be vali
for discrete models in the limit where the lattice constan
very small as compared to the thermal lengthl T5T2/s. For
the localization parameters and the correlation function
two particles inside the same renormalized valley, the disc
sion of the universality is the same as in the symme
case@5#.

IX. CONCLUSIONS AND PERSPECTIVES

To study the anomalous diffusion phasex;tm of the di-
rected trap model and of the Sinai diffusion with bias, w
have extended the usual RSRG method that assumes a
localization in a single valley to allow for the spreading
04610
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the thermal packet over many renormalized valleys. We h
shown how all observables can be computed via a se
expansion inm: at any given ordermn, it is sufficient to
consider the spreading over atmost (11n) traps. We have
given explicit rules for the statistical properties of the
traps. We have shown the exactness of these expansionsm
by comparing up to ordern52 with the already known exac
results, such as the diffusion front@14#, the thermal width
@19#, and the localization parameterY2 @20#. Our construc-
tion moreover gives a clear physical picture of the localiz
tion properties in the anomalous diffusion phase, and
plains the typical shape of the diffusion front in a give
sample obtained by numerical simulation~Fig. 4 of Ref.
@20#!.

In a forthcoming paper@22#, we will adapt our method to
study the localization properties and the aging behavior
the symmetric~i.e., undirected! trap model which has at
tracted a lot of interest recently@23–25#.

For the field of biased diffusion in one-dimensional ra
dom potentials, it would be very interesting to study the
fluence of correlations on the localization properties stud
here for the Brownian case. In particular, the case of al
braic correlations(U(x)2U(y))2;ux2yug is known to give
rise to a creep motion for 0,g,1 @26#. For DNA se-
quences, it seems that the interesting cases are not onl
Brownian caseg51 @9# but also the valuesg.1 @27#. An-
other physically interesting case concerns the logarith
correlations, which give rise to a freezing transition in t
dynamics@28# as well as in the statics@29#.

From the point of view of the RSRG method, since t
usual RSRG is asymptotically exact for infinite-disord
fixed points@13#, the extension introduced here can be se
as a systematic expansion in the inverse disorder streng
can therefore be used for the classical random field Is
chain in the presence of a small magnetic external field@7#,
as well as in the field of random quantum spin chains@13# to
study the Griffiths phases. In particular, the RSRG decim
tion rules are the same for the random walks with rand
forces @2# and for the random transverse-field Ising sp
chain ~RTFIC! @13# presenting random fieldshi and random
couplingsJi with the following dictionary: the forcesf i

2 of
the descending bonds correspond to ln(1/hi), whereas the
forcesf i

1 of the ascending bonds correspond to ln(1/Ji). The
exponent 2d defined in Eq.~213!, which is conserved by the
RG flow @Eqs.~28! and~31! in Ref. @2## exactly corresponds
for the random transverse-field Ising spin chain to the R
invariant exponent 2D defined by@30#

15S J

hD 2D

5e2D(ln J2 ln h). ~217!

Of course, the interesting observables in the two models
very different, so we will analyze elsewhere@31# the physics
of the RTFIC for finiteD beyond the regimeD→0, where
the RSRG is asymptotically exact@13#.

Finally, the expansion in the important traps for the d
namical models discussed in this paper has a static cou
part with the following differences: in the static case, t
9-21
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expansion parameter is the temperatureT, and the main trap
M corresponds to the absolute minimum of the random
tential. We have already shown in Ref.@32# for the toy model
consisting of a Brownian potential plus a quadratic potent
how the thermal cumulants at first order inT can be ex-
plained by studying the statistical properties of the confi
rations presenting two nearly degenerate minima. We
discuss in Ref.@33# in a more general context the structure
the low-temperature series expansions in some disord
systems.
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APPENDIX A: USEFUL PROPERTIES OF THE LÉ VY
DIFFUSION FRONT FOR 0ËµË1

In this appendix, we recall some useful properties of
Lévy distributions~@14,34#, and references therein!.

1. Definition and properties of one-sided Le´vy stable laws

The rescaled sum

y5
1

n1/m (
i 51

n

t i ~A1!

of n identical independent positive random variables distr
uted with a law presenting the algebraic decay

p~ t ! .
t→`

A

t11m
, ~A2!

where 0,m,1, has for limit distribution asn→` the one-
sided Lévy law Lm,c(m;A)(y) defined by its Laplace transform

E
0

1`

dye2syLm,c~y!5e2csm
, ~A3!

and where the constantc reads

c~m;A!5
pA

sinpmG~11m!
. ~A4!

In this paper, we will only use the following series represe
tation @14,34#:

Lm,c~y!52
1

py (
k51

1` S 2
c

ymD k
G~11km!

G~11k!
sinpmk,

~A5!

which is convergent in the whole phase 0,m,1.
We stress here that we have defined the constantc by the

Laplace transform~A3!. Writing the inverse Laplace trans
form as a Fourier integral yields
04610
-

l,

-
ll

ed

e
-

e

-

-

Lm,c~y!5E
2 i`

1 i` ds

2ip
e2sy2csm

5E
2`

1` dt

2p

3expF2 i ty2ctmS cos
pm

2
1 i sgn sin

pm

2 D G ,
~A6!

so that the constantC appearing in the usual Fourier tran
form of Lévy distributions,

Lm,c~y!5E
2`

1` dt

2p
expF2 i ty2CtmS 11 i sgn~ t !tan

pm

2 D G
~A7!

reads in terms of the Laplace constantc,

C5c cos
pm

2
. ~A8!

2. Lévy diffusion front for the trap model

For a given trapt, the distribution of the escape timet is
exponential~9!, which yields after averaging overt ~10!,

f̄ t~ t !5E
0

1`

dtq~t! f t~ t !

5E
0

1`dv
v

qS t

v De2v .
t→`

mG~11m!

t11m
. ~A9!

For a given sample (t0 ,t1 , . . . ), theprobability Pt(n)
for the particle to be in the trapn at time t reads

Pt~n!5E )
i 50

1`

dti f t i
~ t i !

3u~ t01t11•••1tn21,t,t01t11•••1tn!.

~A10!

The average over the disorder

Pt~n!5E )
i 50

1`

dti f̄ t~ t i !

3u~ t11t21•••1tn21,t,t11t21•••1tn!

~A11!

shows that the diffusion front at large time is directly relat
to the properties of the sum of a large numbern of indepen-
dent variablest i distributed with the law~A9! presenting an
algebraic decay~A2!: the rescaled variabley5t/n1/m is dis-
tributed with a one-sided stable Le´vy distributionLm,ctrap(m)

~A3!, where the constantctrap(m) reads for the case~A9!
and ~A4!,

ctrap~m!5
pm

sinpm
. ~A12!
9-22
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The variableX5n/tm5y2m is thus distributed with the law

f m,c~X!5
1

mX111/m
Lm,c~X21/m! ~A13!

with the special valuec5ctrap(m).
In particular, the series expansion~A5! gives the follow-

ing series representation for the diffusion front:

f m,c~X!5
c

pm (
k51

1`

~2cX!k21
G~11km!

G~11k!
sinpmk

5c(
k51

1`
~2cX!k21

~k21!!G~12km!
. ~A14!

Using the series expansion

1

G~12z!
511 (

m51

1`

dm~21!mzm ~A15!

with the first coefficient

d15gE , ~A16!

d25
gE

2

2
2

p2

12
, ~A17!

wheregE denotes the Euler’s constant, we get the expans
in m of the series~A14! for fixed c,

f m,c~X!5ce2cX@~12d1m1d2m2!1~d1m23d2m2!cX

1d2m2~cX!21O~m3!#. ~A18!

Expanding also inm the value~A12!

ctrap~m!511
p2

6
m21O~m3!, ~A19!

we get that the diffusion front reads up to second order inm,

g~X!5 f m,ctrap(m)~X!5F12d1m1S d21
p2

6 Dm2Ge2X

1Fd1m2S 3d21
p2

6 Dm2GXe2X1d2m2X2e2X

1O~m3!. ~A20!

Using the numerical values~A18!, we finally get the expres
sion ~15! of the text.

3. Lévy diffusion front for the biased Sinai model

The exact form of the diffusion front was first determin
in Ref. @15# for a corresponding discrete model. For the co
tinuum model, the result has been proved in Theorem 1
Ref. @17#, which states that for 0,m,1, the rescaled vari-
able X5x/tm for probability distribution~A13!, where the
constantcs(m) is given by a complicated implicit expressio
04610
n

-
of

in Ref. @17#. The value of this constant has been proved
Ref. @18# to have the following simple expression:

csinai~m!58m
pm

2G2~m!sinpm
, ~A21!

where we have used Eq.~A8!.
In Ref. @14#, the same form was conjectured from th

heuristic equivalence with the directed trap model via
indentification of the parameters on some observable

csinai~m!5
2

x1
S t1

2 D m pm

G2~m!sinpm
, ~A22!

wherex152T2/s and t15x1
2/(2D0) in terms of the diffu-

sion constantD0 in the pure case. This expression inde
coincides with Eq.~A22! for the unitsT51, s5 1

2 , andD0
5 1

2 used in Ref.@18#.
In the notations used in this paperD05T ~4!, this corre-

sponds to

csinai~m!5
sb2

~s2b3!m

pm

G2~m!sinpm
. ~A23!

To compare with the directed trap model, it is convenie
to consider the ratio of the two constants~A12!,

csinai~m!

ctrap~m!
5

sb2

~s2b3!m

1

G2~m!
. ~A24!

So beyond the natural dimensional factors, there is sti
function G2(m) between the two models, whose origin w
be discussed in details in the text.

APPENDIX B: STATISTICS OF THE INTERNAL
STRUCTURE OF RENORMALIZED VALLEYS

1. Distribution inside a renormalized valley

To compute the functionals~204!, we generalize the ap
proach developed in Ref.@5# for the symmetric casem50.
We first exponentiate the denominator

P`~y.0!5E
0

`

dqR̀2~q!S`
1~y,q!, ~B1!

P`~y,0!5E
0

`

dqR̀1~q!S`
2~y,q!, ~B2!

where

RG
6~q![K expF2qE

0

l G
dxe2bV6(x)G L

$V6%

, ~B3!

SG
6~y,q![K e2bV6(y)expF2qE

0

l G
dxe2bV6(x)G L

$V6%

.

~B4!
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These two functionals may be expressed as

RG
6~q!5N6E

0

1`

dl lim
e→0

1

e2
F [0,G]

6 ~G2e,l ue!, ~B5!

SG
6~y,q!5N6E

0

G

duE
0

1`

dl lim
e→0

1

e2
F [0,G]

6

3~G2e,l uu!e2buF [0,G]
6 ~u,yue! ~B6!

in terms of the path integrals

F [0,G]
6 ~u,l uu0!5E

V(0)5u0

V( l )5u

DV~x!expF2
1

4sE0

l

dxS dV

dx
6F0D 2

2qE
0

l

dxe2bV(x)GQ [0,G]$V~x!%, ~B7!

where the symbolQ [0,G]$V(x)% means that there are absor
ing boundaries atV50 and V5G. The expansion of the
quadratic term of the measure yields

F [0,G]
6 ~u,l uu0!5e2(F0

2/4s) l 7d(u2u0)F [0,G]~u,l uu0!, ~B8!

where

F [0,G]~u,l uu0!5E
V(0)5u0

V( l )5u

DV~x!expF2
1

4sE0

l

dxS dV

dxD 2

2qE
0

l

dxe2bV(x)GQ [0,G]$V~x!% ~B9!

represents the analogous path integral for the symme
case. Its Laplace transform has been computed in Eq.~B18!
of Ref. @5#. We get

RG
6~q!5

N 6e7dG

sES 0,G,
F0

2

4s D ~B10!

and the Laplace transforms with respect toy,

ŜG
6~p,q![E

0

1`

dye2pySG
6~y,q!5

N6e7dG

s2 E
0

G

due2bu

3

ES 0,u,
F0

2

4s D
ES 0,G,

F0
2

4s D
ES u,G,p1

F0
2

4s D
ES 0,G,p1

F0
2

4s D , ~B11!

in terms of the function
04610
ic

E~u,v,p!5
2

b F I ~2/b!Ap/sS 2

b
Aq

s
e2bu/2D

3K ~2/b!Ap/sS 2

b
Aq

s
e2bv/2D

2K ~2/b!Ap/sS 2

b
Aq

s
e2bu/2D

3I ~2/b!ApsS 2

b
Aq

s
e2bv/2D G . ~B12!

The normalizationsN6 are obtained with the condition
RG

6(q→0)51,

N65s
sinhdG

d
e6dG. ~B13!

We thus obtain that there is no dependence in the sign6 for
the functionalsRG

6(q) and ŜG
6(p,q). As a consequence, w

get the nonintuitive result that the probability distributio
PV(y) is symmetric iny→2y. The restoration of this sym
metry comes from the conditioning of the random walk
reachG. We note that similarly, the distribution of the ran
dom timesl G

1 and l G
2 are also the same, since we have, w

the notations of@2#

PG
6~z50,s!

PG
6~z50,0!

5
UG

6~s!

UG
6~0!

5
As1d2sinhdG

d sinhGAs1d2
. ~B14!

The Laplace transform of the distribution inside a vall
thus reads

P̂V~p![E
0

1`

dye2pyPV~y.0!5E
0

`

dqR̀6~q!S`
6~p,q!,

~B15!

R`
6~q!5

1

G~11m!

S 1

b
Aq

s D m

I mS 2

b
Aq

s D , ~B16!

Ŝ`
6~p,q!5

S 1

b
Aq

s
D m

qG~11m!
E

0

2/b
Aq/sdzz

3
IAm214T2p/s

~z!

IAm214T2p/sS 2

b
Aq

s
D

3F Km~z!2

KmS 2

b
Aq

s
D

I mS 2

b
Aq

s
D I m~z!G .

~B17!
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The final result is thus given by Eq.~205! of the text.

2. Partition function of a renormalized valley

We now consider the probability distribution of the par
tion function of a renormalized valley~180!,

ZV5E
0

1`

dze2bV2(z)1E
0

1`

dze2bV1(z), ~B18!

where the potentials satisfy the constraints~182!.
Its Laplace transform can be directly expressed in te

of the functions~B3!, which we have computed before E
~B17!,
e
er,

t

.

s
-

n

04610
s

E
0

1`

dZVP~ZV!e2qZV5R`
1~q!R`

2~q!

5F 1

G~11m!

S 1

b
Aq

s
D m

I mS 2

b
Aq

s
D G

2

.

~B19!

After the rescalingZV5z1 /(sb2), this corresponds to the
result ~186! given in the text.
, J.
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