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Localization properties of the anomalous diffusion phase in the directed trap model
and in the Sinai diffusion with a bias

Cecile Monthus
Service de Physique Thique, Unifede Recherche Assoei@u CNRS, DSM/CEA Saclay, 91191 Gif-sur-Yvette, France
(Received 11 December 2002; published 21 April 2003

We study the localization properties of the anomalous diffusion pkas# with 0<u <1, which exists
both in the Sinai diffusion with a small bias, and in the related directed trap model presenting a broad
distribution of trapping timeg(7)~ 1/71"#. Our starting point is the real space renormalization method, in
which the whole thermal packet is considered to be in the same renormalized valley at large time: this
assumption is asymptotically exact only in the limit of vanishing hias 0 and corresponds to the Golosov
localization. For finitew, we thus generalize the usual real space renormalization method to allow for the
spreading of the thermal packet over many renormalized valleys. Our construction allows one to compute exact
series expansions in for all observables: to compute observables at ogderit is sufficient to consider in
each sample a spreading of the thermal packet onto at mosn)lraps. So our approach provides a
description of the structure of the thermal packet sample by sample, and a full statistical characterization of the
important traps at a given order . For the directed trap model, we show explicitly up to orgiérhow to
recover the exact expressions for the diffusion front, the thermal width, and the localization parémé&téer
then use our method to derive exact results for the localization param&téos arbitraryk, the correlation
function of two particles, and the generating function of thermal cumulants. We then explain how these results
apply to the Sinai diffusion with bias by deriving the quantitative mapping between the large-scale renormal-
ized descriptions of the two models. Finally we study the internal structure of the effective “traps” for the Sinai
model via path-integral methods.

DOI: 10.1103/PhysRevE.67.046109 PACS nuner64.60.Ak

I. INTRODUCTION properties by computing the infinite-time limit of the local-
ization parameters, which represent the disorder averages of
The motivation to study the Sinai moddl] has two ori- the probabilities thak independent particles in the same
gins. On one hand, the Sinai model represents a “toy” dissample starting from the same initial condition are at the
ordered system, in which many properties that exist in moréame place at timeand of the correlation functio@(l,t),
complex systems can be studied exactly, such as aging b#hich represents the disorder average of the probability that
havior [2,3], persistence exponenfg,4], the decoupling of WO indep_endent par_ti_cles in the same sample starting from
the dynamics into fast degrees of freedom, which rapidlyth€ same initial condition are at a distarideom each other
reach local equilibrium and a slow nonequilibrium part gov-2t timet. We have moreover shows] that the the infinite-
erned by metastable statis], and some chaos and rejuve- t!me I|m|t'of the Iocallza}tlon pargmeters and of thg correlg-
nation effect§6]. On the other hand, the Sinai model directly t_|or_1 function exactly cq|nC|de with the correspo_ndm_g equi-
appears in various specific systems ranging from the dyna Ir?enrl:nn; d Or?:ri?c/a}ibr:ﬁts in a Brownian potential in the
ics of domain walls in the random field Ising chding] to A natl)J/raI questioﬁ is thus: do some of these localization
the unzipping transition in DNA9]. It is thus interesting to roperties survive in the preéence of a small bias?
obtain exact detailed information for various observables irP '
the Sinai model.
One of the most important properties of the symmetric
Sinai diffusion is the following localization phenomenon dis-  The Sinai model in the presence of a constant ligs
covered by Goloso}10]: all the thermal trajectories starting >0 can be studied in a continuum version via the following
from the same initial condition in the same sample remair-angevin equatior14]:
within a finite distance of each other even in the limit of dx
!nf|plte tlm.e.. In particular, in a given sample, for.a given —=Fo— U’ (x(1))+ (1), (1)
initial condition, the rescaled positiod=x(t)/(Int)? is de- dt
terministic and it is only after averaging over the samples
that X is distributed with the Kesten distributidr2,10,11.
The physical picture is that the particle is at timeear the (p()p(t"))=2T8(t—t'), 2
bottom of the deepest valley it has been able to reach. This is
why the real space renormalization group method, first introand wherdJ (x) is a Brownian random potential representing
duced in the field of random quantum spin chdit®,13, is  the disordered landscape,
so well suited to study the symmetric Sinai diffusif®.
Recently[5], we have studied in more detail the localization [UX)—U(y)]’=208(x—Y). (©)]

A. Sinai model with bias

where n(t) is the usual thermal noise
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Equivalently, the model may be defined by the Fokker-
Planck equation in a given samgdle (x)} for the probability q(7) =
distribution P(x,t|X,,0), 7o T

(10

1+,u'

3P (X,t[X0,0) = dy[ Toy+ U’ (x) — Fo]P(X,t|x0,0). (4) Itis clear that this choice simply amounts to a rescaling.of
The presence of the large algebraic decay in the effective

In the biased casg,>0, the diffusion becomes transient, trapping-time distribution8) for the biased Sinai diffusion
and there are dynamic phase transitidig—16 as F,  may be understood from the real space renormalization ap-

grows, in terms of the dimensionless parameter proach in relation with the distribution of the barriers against
the drift in the renormalized landscape at sdalg2]:
FoT
u=%- 5 Pr(F)=6(F—T)26e 2%F~1) (12

= ing timer~ e#F | istrib-
For O<u <1, the mean position of the particle presents theWhere 2=Fo/a. The trapping timer~e™ is then distrib

anomalous behavidil4—16 uted with the power law(8) with the correspondence

=26T.
(X(1)) o t#, (6)
t—c C. Previous results for the localization in the directed trap
model
whereas foru>1, there is a finite velocityx(t))~V(u)t. For the directed trap model, the existing results on the

For the anomalous diffusion phase, the exact diffusion frongyiension of the thermal packet are twofold. On one hand,

is given in terms of Ley stable distribution$14,15,17,1& the thermal width has been exactly computed in R&€]
we refer the reader to Appendix for the definition and prop{gq. (26)],

erties of these Ly fronts.

+ o + o0 2
B. Directed trap model <An2(t)>5n§=:0 nPy(n)— ;::0 nPy(n)
It has been suggested in R¢1L4] that at large time, the ) 3
physics of the Sinai model with bias is actually equivalent to _ 1 (S'nm‘> |()t2# (12)
a simple directed trap model defined by the master equation FQ2u)\ wu ’
[19]
where the integral (1) of Eq. (26) in Ref.[19] can be re-
dbi(n) P N Pi(n—1) @) written after a change of variables as
dt Th Tho1
1 (1+2z)z(1—2z)%*

with the initial conditionP;_o(n) = &, o, and where the trap- ()= fo dzzzwz P ysS——— (13

ping times are independent random variables distributed with

a law presenting the algebraic decay The result(12) shows that the the thermal packet is spread

over a length of ordet*.
1 ®) On the other hand, the infinite-time limit of the localiza-
1+p’ tion parameter fok=2 has been exactly computed in Ref.
[20]: their result(24) may be rewritten after a deformation of

So here the random environment consists of the realizatiof'€ contour in the complex plane as
of the trapping timeg 7y, 71,75, . ..}. Given this random

a(r) o

7—0 T

environment, a directed random walk is defined by the se- Yol )= i § ST +rdg e'fr—glf
quence of the sojourn timesy(t;, . ..), where the sojourn 2('“)=tm ~ [P(m)]"= L 2m_ gt )
typet; is a random variable distributed with an exponential (14)

distribution of meanr;,

This expression shows that, is finite in the full domain 0
f(t)= ie—ti/fi_ 9) su<l a_nd ve}nishes in the lim=1. How can t.his prop-
i i erty coexist with the resultl2) for the thermal width? The
numerical simulations of Ref20] show that for a single
The anomalous diffusion phase<Qu<1 then corre- sample at fixed, the probability distributiorP;(n) is made
sponds to the phase where the mean trapping t{mje  out of a few sharp peaks that have a finite weight but that are
= [d7rrq(7) is infinite. The corresponding diffusion front is at a distance of order. This explains why at the same time,
also a Ley diffusion front (see Appendix A as for the bi- there is a finite probability to find two particles at the same
ased Sinai diffusion discussed above. For simplicity in thissite even at infinite time, even if the thermal width diverges
paper, we choose the normalization of the algebraic tail to bast?* at large time.
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D. Goal and results spreading of the thermal packet onto at most-{1) traps.

The aim of this paper is to provide a probabilistic descrip-so our description provides a description of the structgrg of
tion, sample by sample, of the localization properties of théN€ thermal packet sample by sample, and a full statistical
directed trap model and of the Sinai diffusion with bias in thecharacterization of the important traps at a given ordgz.in
anomalous diffusion phase<Ou<1. More explicitly, the We th_en use our pr_oce_dure to derlve_ other exact results.
question we address is the following: in a given sample repY/e obtain the expansion ip 02f the localization parameter
resenting a particular realization of the random environmentY k for arbitraryk up to orderx
what is the probability distribution for the position of the
random walker? B e

We will need to generalize the usual real space renormaIYk(“)_lJr'“f
ization group(RSRG method[2] to allow the spreading of

dv
—[e M+ (1-e")k-1]
0 1%

the thermal packet over many renormalized valleys. Indeed, , [Fedv (+=dw_ K

in the usual RSRG method, the whole thermal packet is con- tu fo TL W LP2(v. W)+ pa(w,v)

sidered to be in the same renormalized valley at a large time:

this assumption is asymptotically exact in the symmetric Si- +2p§(v,w) +1-e k—2(1-e V)k—(1—e WK
nai model and actually corresponds to the Golosov localiza- 3

tion [5,10] discussed above; it is also valid for the biased +0(r?), (18)

case but only in the double limit of vanishing bias-0 and

large time with the fixed parameter= T Int [2]. We will ~ where the functionp, andp; are defined in Eq(89).

thus define explicit rules for the RSRG approach with mul- We obtain that the correlation function of two particles
tiple valley occupancies and show that our construction alaverages over the disorder reads

lows one to compute exact expansionsgirfor all observ-

ables. toe te

C(l,t)= 20 mzo P(n,t|0,00P(m,t[0,08 nm

1. Summary of results for the directed trap model

For the directed trap model, we explicitly show how to 1 [
recover in a unified framework the expansions up to ogder = Yo(u) 60t —#Cﬂ< | (19
of the exact results for the observables discussed above. t=e t t
(@) Expansion inu of the Levy diffusion front for the
rescaled variabl&X=x/t* (see Appendix A where the weight of thé peak at the origin corresponds as it
) should to the localization paramet&r, (17), whereas the
Ly BV = a2 second part presents a scaling form of the variabHd /t#.
9(X)=e “Fuye(X-De "+u’| 5+ 5 We obtain the following expansion for the scaling function
C,:
7w v\ v 7] 5 :
+ X E_37)+X (7_E) e +O(,LL ) ) 71_2
C,(N)=e A(M(z IN2)+ u? = —IN2(4+1In2+ yg)
(15 3

2

(b) Expansion inu of the thermal widthfrom Egs.(12) _ %Jrln 2(n2+ yg)

and (13)] A

+0( ,ﬁ)). (20)

(An?(t))

A(wy=lim-—2—= = p(2n2)

We also consider the generating function of rescaled ther-
mal cumulant, (u),

t—o

71_2
— 5 T2In2(n2-2+2y)

+0O( 3) —s(n/t* < (_S)k
) Z,(s)=In(e" >>=k21—ck<m. (21)

k!
(16)

2

+u

The first one simply represents the mean value that can be

(c) Expansion inu of the localization parametéf, [from obtained from the diffusion front15)

Eq. (14)],

2

T
4In2——

Yo(u)=1-pu(2In2)+pu? 5

+O(1?). Cl(M):%ZfOJrOOdXXfZap(X). (22)
(17

These comparisons with exact results show that our genfhe second one,(u) represents the thermal width(u)
eralized RSRG procedure is exact order by ordeiinto  (16). We obtain the expansion at first ordergnof the gen-
compute observables at orde?, it is sufficient to consider a erating function

046109-3



CECILE MONTHUS PHYSICAL REVIEW E67, 046109 (2003

Yﬁinai: YLrapyﬁalley, (29

+oo ldv
ZM(S)=—5+MJ dye " J —Infe " +(1—-e V)e s"]
0 ov

where Y22'®Y | computed in Eq.(210), is the localization
) parameter fok particles at equilibrium in an infinitely deep
+0(p%). (23 biased Brownian valley.
For the two-point correlation function, we obtain for the
The series expansion sthen yields all thermal cumulants at Piased Sinai model the two-scaling form
first order inw. In particular, the first terms beyond the mean

+edy
+J —In[e vesY+(1—e Y)]
1 1%

valuec and the thermal widtlc read ra oB?
(1) 2(1) Csinaill,D=Y} pCua||ey(|)+WC,,,
_(n®)=3(n*){n)+2(n)*
C3(p)=1im 3 | o B2
toe e X|\N= e (30)
Fe(p)(to"p)*
=u6(2In3—-3In2)+0(u?), (24)

where the first part represents the case where the two par-
4 3 2\2 2 2 4 ticles are at a finite distance from each other at infinite time,
c4(,u,)zlim<n )~ 4nn) 3<n2> *12n7)(n)”~ 6(m) in which case their correlatio,,iey(1) is given by Eq.

t o (212. The second part, corresponding to the cases where the
two particles are in different renormalized valleys at infinite
time, is exactly given by the scaling functiaf), (20) de-
scribing the long-range behavior in the trap model.

—00

=u24(19In2—12In3)+O(u?). (25)

2. Summary of results for the biased Sinai model

We will derive an exact quantitative mapping between the 3. Organization of the paper
renormalized descriptions of the trap model and the biased \we first study the directed trap model: Section Il presents
Sinai diffusion with bias. As a consequence, in the wholeyhe ysyal RSRG that yields all observables in the lipit
anomalous diffusion phase<Qu<1, all properties of the _,q- i Sec. III, we explain the origin of the spreading of the
directed trap models that concern the rescaled quaMtity thermal packet at first order j and compute observables at
=n/t* are exactly the same for the Sinai model with bias inipig order; in Sec. IV, we study the second orgé€r in Sec.

terms of the rescaled quantity V, we explain the structure of the set of important traps at
5 any given ordem".
XopB We then turn to the biased Sinai model: in Sec. VI, we

(26 derive the quantitative mapping between the large-scale

X=———
[?(p)(to®B)* . o : ,
renormalized descriptions of the two modélse biased Si-

This relation was already conjectured in REf4] for the ~ Nai model and the directed trap mogdein Sec. VII, we
special case of the averaged diffusion fronts of the two modmoreover characterize the internal structure of the “traps” in
els (see Appendix A In particular, the thermal width of the the biased Sinai model by computing various statistical prop-

Sinai model reads from the exact res(d®) of Ref.[19], erties of infinitely biased Brownian valleys. Section VI
contains a discussion on the universality. Finally, Sec. IX

3 contains the conclusion, and some more technical details are
) () 27 given in the Appendixes.

(M) (02832 T4(p) [sinmp
2 o2t Tw|
Il. DIRECTED TRAP MODEL IN THE LIMIT p—0

(a?B%)%* [ (21n2) w2
=% [ 3 +[_F The real space renormalization procedure for the Sinai
o°p s model[2] can be reformulated for the directed trap model as
follows. At time t, all traps with trapping times;<t are
(28) decimated and replaced by a “flat landscape” to produce the
renormalized landscape at tihé/\e stress here that contrary
to the symmetric Sinai diffusion, the remaining traps are just
and more generally, all thermal cumulants can be obtainedome of the initial traps, and that their trapping times have
from the results of the trap modéR5) via the correspon- not been renormalized by the decimation of the small ones.
dence(26). This nonrenormalization of the trapping times actually cor-
For the localization parameters, the re(J|f” represents responds the biased Sinai landscape to the fact that barriers
for the biased Sinai model the probability to fikdndepen-  against the bias converge without rescaling to a fixed distri-
dent particles at a finite distance from each other in the limibution[2]. The usual RSRG picture for the dynamics is now
of infinite time. These particles are then distributed with thevery simple: the particle starting &0 in then=0 trap will
Boltzmann distribution in an infinitely deep biased Brownianbe at timet in the first trap of the renormalized landscape,
valley, leading to that is, in the first trap having a trapping time bigger than

+2In2(In2—2-2yg)

1
;+o
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We will call this trap the main trap/. In the usual RSRG
approach, all thermal trajectories are in the same kapn

particular, the probability distribution in a given sample is a

S function,

PO(N) =5y, (3D)

and the localization is total: there are no thermal fluctuations,

[An?(1)]@=0, (32)

PHYSICAL REVIEW E 67, 046109 (2003

and more generally, all thermal cumulants beyond the first FiG. 1. Hierarchical structure of the important traps for a par-
one vanish; the generating function of thermal cumulantsicle starting at the origin. The dashed line separates the “small”

(21) simply reads

n
O)(g)= —g-M_ _
Z,’(s) St/‘ S.

(33

The two-particle correlation function is &function

+ o0

cO,H=2> X POMPOM)S |nm=50 (34

n=0 m=0

+

and the localization parameters have their maximal value,

YOt)=1. (35

traps(those having a trapping time smaller thgnfrom the “big”
traps(those having a trapping time bigger thgn The first big trap
called M is occupied with a weight of orde®(«°). The next big
trap L, and the biggest small trap, beforeM are occupied with
weights of orde©O(u). The third big trafd.,, the biggest small trap
I, betweenM andL,, and the second biggest small tr&pbefore
M are occupied with weights of ord€(u?).

Ill. DIRECTED TRAP MODEL AT FIRST ORDER IN
A. Origins of the dispersion of the thermal packet at orderp

At first order inu, we need to consider the two following
effects(see Fig. 1

(a) The main trapgVl defined above has a trapping timg
that is not infinite. There is a small probability le~ ")

The corresponding averaged diffusion front is thus simplythat the particle has already escaped from this mainhtap

given by the distribution of the positiom=n,, of the main
trap

PO(n)= 1—ft “drg(7) ft “dra(n, (30

where the first parft- - - 1" represents the probability that the
first ntraps have trapping times<t, and where the last part
represents the probability that theh trap has a trapping

time 7;>t. So the scaling functiog describing the averaged
diffusion front at large time

P Lol n 3
t(n)t_—mt—#g ” (37
is given at this order by a simple exponential,
g@x)=e7%, (38)

which indeed coincides with the limit—0 of the exact
Lévy front (see Appendix A

So the approximation where all particles of the same ther-

time t to jump into the next renormalized trap that we will
call L, (for large trap number )1l which is defined as the
second trap satisfying, >t.

(b) The biggest trap before the main trap, which we will
call S; (for small trap number )1 has a trapping time-sl

<t that is not zero and thus there is a small probability
e Y7s, that the particle is still trapped i8; at timet.

We now describe the statistical properties of these two
effects.

B. Statistical properties of the trap L,

The joint distribution of the trapping timey, , of the po-
sition n=ny, of the main trapM, and of the positiom, of
the next renormalized tralp; reads

Dy, (NN ;7)) = 0(t<7y) B(n<n)

n

q(mv)

nL—n-1 44
[“aaio
t

+
X 1—] drq(7)
t

+
X 1—] drq(7)
t

mal packet are in the same trap is correct only in the limit of

vanishingu. For finite u, we will have to allow for a pos-

sible dispersion of the thermal packet. In fact, in the limit
un—0, we have considered that the distribution of the trap-

1 ~n _
_DMxLl X— t_,U-'XL_

t—oo tzﬂ

?_:;TM>, (39)

ping times was infinitely broad in the following sense: all yjth the scaling function

traps with 7;<<t were such that;/t~0, whereas all traps
with 7,>t were such that; /t~ +c. For finite u, we have

to take into account that these ratios are not really zero o

infinite. We will do it order by order inu.

t \ &
—) e L,

1 'TM TM
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In particular, the distribution of the trapping time, is
obtained, as it should, by simply normalizing the original S(XS.X)=J d7sDs, m(Xs, X;75)=
distributionq(7) on the intervalt,+ o],

B(X>Xs>0)
X €

(48)
i.e., X is distributed withP(®¥=e™X (38), and Xg is uni-
qt(TM)=f dxf dX Dy, (X, XL ;7) formly distributed on the intervdl0,X]. The distribution of
the trapping timerg alone reads
/th’u + o + o
=0(ty—1) Lru (42) r(Ts):f dxsf dXDs, m(Xs,X;7s)
M 0 Xs
The probabilitym_=(1—e~ /")) to have already escaped _ 6(t>rs),u7571 (49)

from the main trap at timeand to be thus already in the trap
L, reads after averaging over the disorder,

th

The probabilitya-rslze*‘”S to be still in the trapS; at time

_ 1 t reads after averaging over the disorder,
7T|_l=f qut(T)(l—e_t/T)=,ufo dvv* Y(1-e?) (42

- +e do
7751=J dTSr(TS)eit/TS:,uJ 1+Mefv (50)
— tdv —v 2 1dv —-v 3 Y
—MJOT(l_e )+ L?Inv(l—e )+0(u”), - f+xdv L Zfﬂcdv o o
(43) =M 1 v € 14 1 v € (Iu“ )1 ( )
so it is of ordersu. so it is of orderx. L e
At this level of approximation, the diffusion front for a At this level of approximation, the probability distribution

given sample is made out of tw® distributions, reads

PO D(ny=e V™5, +(1-e V)5, . (52

P, Dn=e s, +(1—e "W)5,, . (44 ' > "
We now use the statistical properties of the trapsand

S, to compute various observables at orger
C. Statistical properties of the trap S;

The trapS, has been defined as the biggest trap before the D. Diffusion front at order

main trapM. The joint distribution of the positiom of the The correction due to the trélp, to the diffusion front in
main trap, the positioms, and the trapping timeg of the @ given sample44) with respect to one> function at the
trap S, read zeroth order(31) reads

+n n1 P, (m=P@l, P(m)—POn)

Ds, m(Ns,n;75) = O(t>75) 1‘[ dTQ(T)} un
Ts =(1-e M)(an,nl_l_ 5n,nM)- (53
XQ(Ts)j+deQ(7') (45) The average over the samples, that is, over the positions
t

(ny,n.) and the trapping timer with the measurg40)
yields the correction to the scaling functi6av),

1 Ng n )
t_:m'[Z_MDSl’M XS:t_M’X:t_M;TS , QMLI(Y)=deMdef dX D1, (X, XL ;7um)
(46) X(1—e VM) S(Y=X) - 8(Y=X)] (54)
where the scaling function reads _x 1 4 B
=e (X—l),u,f dvv* *(1—-e™Y) (55
0
DslyM(Xs,X;Ts):0(t>7’s>1)0(x>xs>0) 1dv
=e (X~ 1) uf —(1-e™)
o
el i) o X(trgH 47 0ov
TS\ Ts

. (56

o [tdv - 3
+u Inv(l—e ")+0(u°)
We note that here, there are correlations between the trapping ov

time and the positions, contrary to the decoupled measure Similarly, the correction due to the tr&h to the diffusion

(40) concerning the trafk;. The joint distribution of the  frontin a given samplé52) with respect to oné function at
positions alone reads the zeroth ordef31) reads
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PEM(M=PEN O(n)—PO(n)=e™"S(8, o~ 8nn,,)- a [ @re)]®
57 [AWIsn= g N
1
After averaging over the samples with the meagyra, 5
we obtain the correction to the scaling functi(@?), — e 91— g~ (179 (nL—ny)
t2+
g(sll)Mmzdesf dxf IXDs, wXs: Xi79) 2 de 1-3emv(1—eY) (65
=2u Vv -
x e U S(Y—Xg)— 8(Y—X)] (58) !
+edy 3
tody e =2,U,f —e Y(1l-e™Y)
=m| e t(1-Yote ™ (59 1 v
1

_ 2 tedo “V(1_a U 3
6 —Inve '(1-e ") +0(4?). (66)
1

+=dv
=,ue‘x(1—X)J —e U+ ule X (X?-2X)
1 v Adding the two contributions finally yields

*‘”dv v + o0
Xf Tlnve +O(M3)- (60) [A(M)](l) —ZMJO Ci)—ve_”(l—e_”)=,u,(2|I’12) (67)

1 total —

Adding these two contributions to the zeroth-order frontin agreement with the exact res(it6) of Ref.[19].
(38), we finally get
F. Localization parameters at order i
0+ = 5O X} + gL (X)+agd) (X
Giorar =97 (X) + G, (X) +dsm(X) For a given sample, the contribution of the tlap(44) to
—e X+e X(X=1)mye+O(u?) (62) the localization parameteéf, representing the probability to
’ find k independent particles in the same trap at tinmeads

which coincides with the expansion at ordgerof the exact Y 1O+ 1y = (e~ Um)k4 (1 — e~ YK 68
So after averaging over the samples, that is, over the trapping

E. Thermal width at order p time 7 (41), the correction to the zeroth ord@5) due to the

For a given sample, the contribution of the tiapto the ~ rapL reads

thermal width reads, Eq44),
[(An?(t) ]G, =(n*)—(n)?

—e Um(1—e Um)(n —ny)? (62

LY, (O=IYd@l PO - YO
1
:'U“f dvv* e M+ (1—-e V)k—1]. (69
0

Averaging over the disorder, that is, over the positions and Similarly, the correction to the zeroth ord@5) due to the

the trapping timer with the measur¢40) yields trap S; reads after averaging over the samples, that is, over
the trapping timerg (49),

(1)

An?(t
(A, = % YIS O=1Y0% D) —vO(0)
t ML, n
=2,uj dvv* le ¥(1—e™?) (63)
O (70)
ldv Adding these two contributions, we finally get at first or-
ZZMJOTe’”(l—e’”) der in u,

1dv YO WO=YO 1Y, 0 O+ YIS
+2,uzf TIn ve '(1—e V)+0(ud). (64
0 +edv
:”“f T[e—'<v+(1—e—v)k— 1]+ 0(u?).
Similarly, the contribution of the traj$, (52) averaged 0
over the samples with the measu#y) reads (72
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For the special case=2, the result correction with respect to the zeroth order of the correlation
- function (34) reads
YOTM=1—(2In2)u+0(u? (72)

cii (L,o=Cc M,t)—cO,t
is again in agreement with the expansidd) of the exact ut, (LO=Cut, (LY (.6)

result[20]. The other first values df yield 1
0+ (1) =[Y,11) §5 +2,—e "
Y:(30)+(1):1_(3 In 2)/~'L+O(/~L2)y (73) [ Z]MLl 1,0 Mt'u'

1
M+O(/~L2)- (74) XJO dvv”_le_”(l—e_”). (77)

e 32
Yg°>+<l)=1—<2 Ing

It presents the forn19): the weight of thes part has been

G. Correlation function of two particles at order p obtained in Eq(69) and the scaling function reads

We now consider the correlation function of two particles

(19. For a given sample, the contribution of the ttap(44) _ 1 1y .
reads g P tap( [C.(M)]u,=e "2u Odvv“ lev(1-e™Y) (78)
4o 4o
(0)+(1) = (0)+(1) (0)+(1) 1d
cil, Po=2 3 PR OmPRIOmME 0 e Zﬂf B v1me
(79 0
—tiry 2 —timy 2 o [tdv - - 3
=[(e"™M)+(1-e "™M)7]5 o +2u f T|nve v(1—e V) +0(ud)|. (79
0
+2e‘“7M(1—e‘“’M)&,(nLl_nM)- (76)

Similarly, the contribution of the traf; reads after aver-
After averaging over the disorder with the meas@#®, the  aging over the samples with the meas(#®),

CEu(1.0)=C8y @-cO ) =[(e”")*+(1-e 757~ 1]5 o+ 26 "(1—e "9, (3, )

(@) tedy . 1/tF)oH
=[Y,]58M 0 ot 2u | —e U(1—e v)—e U7 (80)
1 ’ 1V tH
|
It presents the forng19): the weight of thes part has been H. Generating function of thermal cumulants
obtained in Eq(70) and the scaling function reads at first order in p
*edy The correction to the generating functi d h
_ TP g ing functi@el) due to the
[CuM Ism Z’ML v © (1=ee (81) trap L, (44) with respect to the zeroth ord€33) reads with

the measurg40),

=e MN2u 7e Y(1-e™Y)

1

[ZM(S)]SLE[Zl‘(s)]g\?l).-:(l)_ZELO)(S)

+edy
_ 2 —v(1_a" 0
2,U/ )\fl v |n ve (1 e ) . (82) :In[e—t/TM+(1_e—t/TM)e—S(XL—X)]
Adding these two contributions, we finally get at first order 1 [ _vy

: : : o =u | dvv* dye

in u the following correlation function: 0 0

cO*W,H=cO,n+Ccil +cky, XIn[e '+ (1—e ")e sY]. (84)

1
=[1-(2In2p+O(u*)]g ot —e

Similarly, the correction due to the trép, reads with the
X[(2In2)w+0O(u?)]. (83)  measurg47),
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2= 2,120

_ |n[e—t/rses(X—XS)+(l—e_”75)]

+ody [+
Z,uj —f dye "
1 U Jo

xIn[e veS'+(1—e V)]. (85
The total correction at ordew thus reads

[Z,.(91 =29 R +[Zu(5)]5M

+oe ldv
=,uf dye J —In[e v+(1—e Y)e 5]
0 ov

tooq
+f Tvln[e’”eSYnL(l—e’”)] . (86)

1

We may now perform a series expansionsiand evaluate
the integrals to obtain the generating function of all thermal Xﬁ

cumulants at first order i,
[Z,(5)]{&)a=—sye+sin2-5%(2In3-3In2)
+s%(19In2-12In3)+ O(s®) (87)
leading to the result&25).

IV. DIRECTED TRAP MODEL AT ORDER  p?

A. Dispersion of the thermal packet at orderp?

To compute observables at ordgf, we now have to

PHYSICAL REVIEW E 67, 046109 (2003

pa(v,W)=p3(w,v); (90)

and the three occupation probabilities satisfy the normaliza-
tion

pl(v)+p2(viw)+p3(viw):1' (91)

The enumeration of the various possibilities for the three
traps is as followgsee Fig. 1

1. Configurations(M,L,L>)

The three traps are the main trigy the next renormalized
trapL4, introduced in Sec. Il B, and the second next renor-
malized trap that we call,. The joint distribution of the
rescaled positions and trapping times read

Tty LK XML X T )
=60(t<7y) 6(t<7 ) (0=X<X;=<X3)

o

t
e X2, (92

™

t

TLl

o

™ 7L,

At this level of approximation, the diffusion front is made
out of threes peaks as

pﬁ’l)_IL(;)Jr(Z)(n) =P1(t;7m) Omn,, T P2A(t; 7M7)
X 5m,n|_ +ps(t; v aTLl)ém,nL , (93
1 2
where the weights of the three traps are given by (B§).

2. Configurations(M, I ,,L)

consider the possible dispersions of the thermal packet over

three traps. Denoting by, and 7, the first two trapping

The tree traps are the main tréfy the next renormalized

times, the occupation probabilities of the three ordered site§@p L1, introduced in Sec. Ill B, and in between the inter-

are given by

py(t;my)=e V",

T2 _ _
Pa(t; 71, 72) = (e Vm2—e7tm),
To—Tq1
Tze—t/Tz_ Tle—t/Tl

Pa(tiTy, 7p) =1 (89

In the following, we will also use the notations=t/r,, w
:t/Tz:

pi(v)=e"",
oo W)= —— (e V=g ),
P3(v,W)=1-Py(v) ~ Polv,W). (89

To simplify computations later, it will be convenient to use in

mediate trap that we cdlb, defined as the biggest trap in the
decimated region between M ahgd. The joint distribution
of the rescaled positions and trapping times read

T, L, (XX XL 7w, 7)
= 0(7M>t> T|>1)0(XL>X|>X>O)

Mm

™

“ I
L) ﬁ(l) e Xg— (XL—X)(t/m)*, 94
™/ TI\T

The corresponding diffusion front reads
P&ﬁ)l):L(llH(z)(n) =P1(t;7m) Omn, T P2A(t; 7, 71) Smn,
+p3(t;TM vTI)5m,nle (95)
where the weights are given by E@S).

3. Configurations(S,,S,,M) and (S;,S;,M)
The tree traps are the main trap, the trapS; defined

intermediate calculations the two following obvious proper-before as the biggest trap befdwe and the second biggest
ties: the occupation probability of the third site is a symmet-trap beforeM, which we callS; if its position is betweers,;

ric function of (,w),

andM, andS; if its position is between 0 an§;.
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For the configurationsg;,S,,M), the joint distribution
of the rescaled positions and trapping times is given by

Ts, s, m(X1,X2,X; 75, 7s,)
= 0( 7'32< Tsl<t) 0(0<X1<X2<X)

t

Tsl

t M
_) e*X(t/TSZ)“
s,

and the corresponding diffusion front reads

o

TS2

o
><_
Ts

(96)

1

P(SOJ_)SZISAl)+(2)(n) = pl(t, Tsl) 5m‘nsl+ pz(t, Tsl, TSZ) 5m’n82
P 75,75, Oy (©7)

where the weights are given by E@8).
For the configurationsS;,S;,M), the joint distribution
of the rescaled positions and trapping times read

Tsé,sl,M(Xz X1, X; TS, Tsl)
= 0( T52< Tsl<t) 0(0<X2<X1<X)

t

7'31

t\# }
o e—x(t/Tsz)
7s,

o

M

TSl

(98)

TSZ

and the corresponding diffusion front reads

(0)+(1)+(2)

P
S)SIM

(n)=p4(t; 7'32) 5m,nsé+ Pa(t; Ts, TSl) 5m,nsl
+P3(t7s,:7s)) Smpn,,» (99
where the weights are given by E®S).

4. Configurations(S;,M,L,)

The three traps are the tr&p introduced in Sec. Ill C, the

main trapM, and the next renormalized trap introduced in

PHYSICAL REVIEW E67, 046109 (2003

where the weights are given by E@S).
We now use the statistical properties of these three-trap
configurations to compute observables at ordér

B. Diffusion front at order p?
1. Contributions at order |t of the two-trap configurations

We have already studied the contributions of two-trap
configurations when studying the order The contribution
of order 1?2 of the configuration L, (56) reads

1d
i, 00 =6 (x-1) [ Tinu(i-e ). 102

Similarly, the contribution of order.? of the configurations
S;M (60) reads

+=dy
g(SZl)M(X):,UJZeix(XZ_ZX)j Tln ve Y. (103)
1

2. Contributions at order |f of the three-trap configurations

The specific contribution at ordex? of the three-trap
configurations of typ&lL,L, can be obtained by subtracting
from Eqg. (93) the two-trap configurations L, (44):

PR, (M =PRI @ (n) — PRI @)
(104

=ps(t; 7y aTLl)( 5m,n|_2_ 5m,n|_1)-

The average over the samples with the mea$892g yields
the correction of the scaling functidg7),

QF\AZ)Lle(Y):J'de dle' dxzj TMJ T,

Sec. Il B. The joint distribution of the rescaled positions and

trapping times is given by
Tsl,M,Ll(Xs rx!XL 1 TS;TM)

=0(my>t>75>1) (X >X>Xg>0)

M M
Xﬁ L i L e*X(t/TS)/‘ef(XL7X).
Ts\Ts/ TM\Tm

(100
The corresponding diffusion front reads
P(S(i)l\;rl_(llH(Z)(n) =pa(t; 7'81) 5m,nsl+ po(t; TS ™) 5m,n,v1

(101

+ ps(ti 7sp 7'M)5m,n|_1 )

XTw Ly (X XL X m) (109
Pa(t; v, 7L )Y = X3) = 6(Y—=X1) ] (106
Y? 1dv
= Y| — — 2| =
e > Y},u, -
ldw 3
XJOWP3(07W)+O(M ). (107)

Similarly, the specific contribution at orde? of the
three-trap configurations of typd|1,L,; can be obtained by
subtracting from Eq(95) the two-trap configuration®L
(44), and this yields after averaging over the samples with
the measur¢94),

PiL, (M =Pl (@) = PR n) = pa(ti e, 1) (8, — S, )-

The correction to the scaling functidB87) thus reads

(108
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dv (+=d
o L (N=e"Y Y- } flf ~pa(o. W)+ O(4). (109

For the three-trap configurations of tySgeS,M, we have to subtract from EQ7) the two-trap configuration§;M (52
and to average over the samples with the mea&6e

PEL (=P D@ ()~ PO DT ()= py(t: 75, 75,) (Brmng — Omny): (110

The correction to the scaling functidB87) thus reads

g, w(Y)=e Y| Y- } f Tl f +wd—pz(v w)+0(4d). (111

gs/5,m

For the three-trap configurations of ty§8S;M, we have to subtract from E¢Q9) the two-trap configuration§;M (52)
and to average over the samples with the meaf8eas

P (M =PO5 o Pn) PG @@ n) 112
=Pu(t:7s,) Omng, T (P2(t;7s,,7s)) ~ P2(t:0,75))) dimng + (Pa(t; 75, 75 ) = P3(t:0,75,)) O - (113

The correction to the scaling functidB87) reads

=d =d
@ (Y)=e’Y(1—Y),u2L+ TUInve*”+e Y——) f+ vf —0(v<w[pz(vw)]+0(,u3) (114

gS’S M

For the three-trap configurations of tySeML,, we have to subtract from E@L01) the one-trap configuratio(81), and
the corrections due to the two-trap configuratidhk; (53) andS;M (57), and to average over the samples with the measure
(100,

PEML,(M=PEL () —PP(n) = PEL Pn) = PR, P(n) =[pa(t; 75, 7) = Pa(t:0.1) (O~ Omn,,)-

(119
with the scaling function

@) +°°dw 3

géima(Y)= Y— - —pz(v w)+O0(u”). (116
The sum of all contributions of order? finally reads
g=0,0, N+ 98, (N +9€5 w955 (N +aEMM +aR L+ (V) (117
+tedy (tedw
=e [2Y—-Y?*]u? f f v Pa(v.W)
B +edy B 1dv B
+u2e Y(Y?-3Y+1) f FInve v—f Tlnv(l—e Y|+ 0(ud). (118
1 0
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The double integral may be computed as follows:

d
[A(u)]mf2u2fl—vlnve—v<1—e-”). (120
+edy [+edw ov
J f —pz(UW)

codw 1 whereas the contribution of the configuratioBgM reads,
R R Eq. (66),

_Jld L ng=- T 119 +edv

=), 4= In2a="% (119 [A(M)](szl)MZ—GMZL —Inve '(1-e™). (122

and we obtain the final result
2. Contributions at order |# of the three-trap configurations

2 2 2 2
a a
gg@(Y):MZe*Y 2E+E +Y —3%+E For a given configuration of three traps situated at
(ny,n5,n3) with occupation probabilitiesy,p,,ps), the
yE 2 thermal width reads
2( =
+Y > 12 | (120

2 _ _ 2 _ 2
which coincides with the expansida5) of the exact diffu- (AN%())=P1P2(N2=N1)"+ P1P3(N3=Ny)
sion front described in Appendix A. +pops(Nz—ny)2. (123

C. Thermal width at order p?

Following the procedure described above for the diffusion
front, we obtain the specific contributions at ordet of the
We have already studied the contributions of two-trapvarious configurations as follows.

1. Contributions at order |f of the two-trap configurations

configurations when studying the order The contribution The configurations of typ&L 4L, with the measuré92)
of order u? of the configurationsViL ; reads, Eq(64), give
AR =A@ O - [A (IR @ (124

=P2(t; 7 7L, Pa(ts T, 7L XL, = XL, 12+ Pa(ts i) Palt 7 7 DLOXL, — X) 2= (X, — Xu)?] (129

1dv 3
=p f f _[sz v,W)p3(v,W)+4p1(v)ps(v,w) ]+ O(u). (126)

The configurations of typ#1,L; with the measuré94) give

[A(IR, L =TAIRAP - TA(wIR @ (127)
=P2(t; 7 71, Pa(t; T, 71 )X, = X, 124 Pa(ts m) Pa(ts 7w, 7, ) LK, = Xa) 2= (XL, — Xu)?] (128

idv [+=dw
=p f f W [2P2(v,W)p3(v,W) = 4py(v)pa(v,W)]. (129

The configurations of typ&,;S,M with the measur€96) give

[AGIESM=TA(W ISP ~[A(wIEN @ (130
=Pa(t; 7s,,7s,) Pa(t; 75, 75 ) [ Xm— Xs, 17+ Pa(t: 75 ) Pa(t; 75, 75, ) [ (Xs,— X5 )2 — (Xy— X5 )?] (131
_ zf*wd_vf*“d_w ) ) )= 4p.(v) ) (132
= o) W [2P2(v,W)ps(v,W) —4py(v)pa(v,W)].

The configurations of typ&,S;M with the measur¢98) give
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[AWIGE =LA ]Ige ~[AwISH P (133
:pl(t;TSZ)pZ(t;7821781)(X81_X8é)2+ pl(t?Tsz,Tsl)pa(t;Tsz,Tsl)(XM_Xsé)z
+[Pa(t; 7s,, 75 )P3(trs,, 75 )~ P2(t;0,75 ) Pa(t; 0,75 ) 1(Xy — Xs))? (134
2JJrOOdv vdw
=8 TL v 12P1(v)pa(v, W) +6p1(v)ps(v, W) +2pa(v,W)pa(v,W) = 2py(W)[1=py(W) ]} (139
The configurations of typ&; ML, with the measuré€100) give
[AG)IE ML, =AM —[A (WIS P -Ta IR ® (136
=pa(t;7s))Pat; s, ) [(XL, = Xs))? = (Xy—Xs))?]
+[P2(t;7s,, ) Pa(ti 75, Tm) — P2(;0,7) P3(t;0,7) (XL, = Xw)? (137
, [F=dv (l1dw
=M j _j ——{2p2(v,W)p3(v,W) +4py(v)p3(v,W) —2py(W)[ 1= p1(W)]}. (138
1 v Jo W

Finally, the sum of all contributions at ordgr reads
(A=A (]gh y+ [A)IEW+[A (WIS v
AW I, AR L

AW, L, T TATL,

, [Fdv _ _
=—4u —lInve (1-e™")
0 v

(139

, [+=dv [+=dw
+M J;) 7fv W[4p2(vrw)p3(vaw)

—6p1(v)p2(v,W)+2p;(W)ps(v,W)]

+0(ud). (140

The double integral may be computed as in Efl9 and
yields

+edy (+edw
| S Rt wpso. )~ 6p1(0)p0, )

2

ar
+2py(W)ps(v,W)]=— =412, (141
and thus the final result
2
2 _, 2 T
[A(M)]total_ﬂv 2In2(In2+ 2vg) ? 41n2
(142

coincides with the expansion of the exact resuf).

D. Localization parameters at order p°
1. Contributions at order |f of the two-trap configurations

We have already studied the contributions of two-trap
configurations when studying the order The contribution
of order 12 of the configurationd L, (69) reads

- 1d
[Yk]‘Mzafuzf —Inofe R+ (1-e ))k~1],
0
(143

whereas the contribution of order? of the configurations
S;M (70) reads

+ody
[Yk]‘si{ﬂ:—uzfl —Invfe '+ (1-e ")*~1].
(144

2. Contributions at order |f of the three-trap configurations

For a given configuration of three traps with occupation
probabilities(88), the localization parameters read in terms
of the variablew =t/7; andw=t/r, as

Y= p‘i(v)+p'§(v,w)+p§(v,w). (145

Following the procedure described above for the diffusion
front, we obtain the specific contributions at orget of the
various configurations as follows.

The configurations of typ#L,L, with the measurg92)
give
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[V, =Dt @ =Dy, @

id
=p f Uf _[pz(U W)+p3(v w)
—(1-p1(v)]+0(u?). (146)

The configurations of typ&LI,L; with the measurg94)
give

[V, = DY &= v, 91 4

1d +oedw
—,U«f ”f ~— [P0, W) + pv,w)

—(1=p1(v) ]+ 0O(u?). (148

The configurations of type&;S,M with the measurg96)
give

2 0)+(1)+(2 0)+(1)+(2
[YdEEM=IYdEEu @ -G 7

, [F=dv [+=dw
=u L 7f _[pz(U W)+p3(v w)

—(1-p1(v) ]+ O(u?). (149

The configurations of typ&,S;M with the measurg998)
give

(0)+(1)+(2)

2
[Ydgsm=LYdS 5w

S)S|M - [Yk](SC:)L)NT(l)Jr(Z)
) +edy fvdw K P
=p — |~ 0(v>w){p1(v)+pz(v,W)
1 v J1 W

+p(o,w) — pk(w) —[1— po(W) ]} +O(u).
(150

The configurations of typ&;ML, with the measurg92)
give

(Y€,

=[YdEh O = YO =Ty @ -t @

(151

+ood
=p f UJ' _{pz(v W)+ p§(v,w)+1

—[1—p1(v)]*= k(W) —[1—ps(W) ]} + O(®).
(152

The sum of all contributions of order? thus reads

PHYSICAL REVIEW E67, 046109 (2003

[Yidiatar =LY+ IV, + DY, T YRR,

R
+IVEE mHIYdS s  + [YidEh

SéSM
, (*=do [+edw )
=M f _f _{pZ(UvW)+p2(WvU)
0 v Jo w

+2p%(0,w) +1—p¥(v) —2[1—p;y(v) ]

—[1=pa(w)]¥. (153
For the special case=2, we find
[Yol{ota =24 In2~ g} (154

in agreement with the expansion of the exact regiij. For
the special cask=4, we find

2
V@, = #2< - % +2[21In2+In3(In3— 12)]) .
(159

E. Correlation function at order p?
1. Contributions at order |t of the two-trap configurations

We have already studied the contributions of two-trap
configurations when studying the order The contribution
of order u? of the configurationsviL; (79) reads

(2) — A=\ 2 ldv V(1 _ AU
[C.Mul,=e *2u Inve *(1-e™"), (156
1 ov

whereas the contribution of order® of the configurations
S;M (82) reads

>du
Tlnve‘”(l—e‘”).

(157)

+
[C.00IE0=—2u"Ne™ f
1

2. Contributions at order |f of the three-trap configurations

For a given configuration of three traps situated at
(n1,n,,n3) with occupation probabilitiesp,p,,ps), the
two-particle correlation functions reads

C(1,t)=(p3+p5+p3) 8,0+ 2P1P28) n,—n, + 2P1P38) 0, -,

+ 2p2p35I,n3—n2- (158)
Since the weight of thé peak is given by the localization
parametelY, that we have already considered above, we will

consider in the following only the scaling functia?),(\)
(19). Following the procedure described above for the diffu-

sion front, we will obtain the specific contributions at order

.

The configurations of typ&L,L, give the specific con-
tribution at orderu? as
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[,V L, =[C.V IR P~ e, 001 @

d
—e Mf ”f —[2p(v.W)ps(v.W)
—2p1(v)ps(v,W)+A2p1(v)p3(v,wW)]
+0(ud). (159

The configurations of typ#1,L, give the specific contribu-
tion at orderu? as

[Cu0 i =1 AR~ 1,00 IR

=e ,U«jo J —[2p1(v)pz(vW)

+2p,(v,W)ps(v, W) —2p1(v)pa(v,W)N]
+0(ud). (160

The configurations of typ&;S,M give the specific contri-
bution at orderu? as

[C.)IEs w=[C. I P~ 018N P

+edy (+edw
_e_)\ﬂzf %f W[Zpl(v)pz(v,w)
+2p,(v,W)p3(v,W) —2p1(v)pa(v,W)N]
+0(u8). (167

The configurations of typ&,S;M give the specific contri-
bution at orderu? as

[C.OIgsu=LCM]g e ~ .06

S)SM
+edy
=e ,U«J J —{2I01(W)P2(Wv)

2py(v)[1-pa(v)]
(162)

+2pa(W,v)ps(v,w) —
+2p1(W)pa(v,W)N}+O(u).

The configurations of typ&, ML, give the specific contri-
bution at orderu? as

[C. &ML, =[C. MM -

_ [C ()\)](1)+(2)

[C.)IEN @

1d +oeodw
=ple” f vf v 12P2(W,0)ps(v,W)

2py(v)[1—p1(v)]
(163

—2p1(W)ps(w,v) —
+2p1(W)ps(v, WA} +O(u?).

The sum of all contributions of order? reads
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[C.OV=1C. VIR, +LC.001E 0, +[C. ) IE s
GG 5w +ICMIEUHICDIR 1,

+[C.M)IR,

2
_ 20N
=pue ?—In2(4+ln2+yE)

2

a
+>\( —F+In2(ln2+ ve)

} . (164

V. HIERARCHICAL STRUCTURE OF THE IMPORTANT
TRAPS

It is now clear that the procedure we have described up to
order u? can be generalized at an arbitrary orgerall ob-
servables at ordes" can be obtained by considering a dis-
persion of the thermal packet over at most{11) traps that
have to be chosen among a certain num@erof possible
configurations of the traps. Our aim in this section is not to
pursue any further explicit computations, but to get some
insight into the set of important traps that play a role at a
given ordermn.

A. Set of the important traps at order n

At order n, the important traps are the main tr&fy the
following n large renormalized trags,, ... ,L,; then big-
gest trapsS;, ... ,S, among the small traps befoid; the
(n—1) biggest trapst(l) ...,JY among the small traps in
the interval betweerM and L,, the (h—2) biggest traps
1), ... 113 among the small traps in the interval between
L, and L,; and so on; the biggest traf}"~*) among the
small traps in the interval betweeén, , andL, ;.

The index at the bottom represents the order of occupa-
tion in u as in the Fig. 1. The total number of traps is thus

n
n(n+3
Tp=1+n+>, i=1+ (n*3)

2 — (165

which generalize§ ;=3 (M, S;,
S, identified withS}, Ly, Ly).

Ll) andT2:6 (M, Sl!

B. Set of the important configurations at ordern

With theseT,, traps, we have now to construct the pos-
sible ), configurations of (3 n) traps that are ordered by in
positions, and that contribute up to orde?. We have

n

0=Q, 1+ 0, =2, o, (166)
i=0

wherew, represents the number of configurations that begin
to contribute at orden.
We may now decompose

—al gDy gty oM
n n

(167)
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whereaﬁfi) is the number of configurations that containas
. . . (L) .

the rightmost trap. Foy=n, there is onlya, ™ =1 configu-

rationML,L,---L,, whereas folj =0,

al=nt, (168
since we have to order in space th&apsS,, . . . ,S, before

M. More generally, at ordgr to construct the configurations

of (n+1) traps containingML,---L;, which representj(

+1) fixed traps, we have to choose-{|) traps among the
(j+1) available intervals and to count the possible posi-

tional orders in each interval as

+ + o0 j+1

L; .

aj=2> - X 6(_ pi=n—1)p1!-~p;+1!
p1=0 Pj+1=0 \i=1

(169

The final result is thus that the number of new configura-

tions that appear at orderreads

+oo +o j+t1
DISEEIPY 5(2 pi=n—i)p1!---p;+1l
=

Pj+1=0 i=1
(170

n
wp= >,
]=0
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FIG. 2. Computation of the escape time from a renormalized
valley of barrierI": we consider the first-passage timebafor a
particle starting at 0. The double integ(4l76) is dominated by the
Arrhenius factore®", and the prefactor is the product of two parti-
tion functions:Z,, represents the partition function of the bottom of
the valley andZg represents the partition function of the inverse
potential —V near the top of the barridr.

B. Trapping time of a renormalized valley of barrier T’

Let us now recall a standard result for one-dimensional
Fokker-Planck equatiof21]: for a particle diffusing in a
potentialU(x) on a interval[a,b] with reflecting condition
at a, the exit time defined as the first-passage tifig) at
the pointb for a particle starting at e (a,b) at timet=0 can
be studied for an arbitrary potentidl(x): the moments

which generalizes what we have found before for the lowest

orders wo=1 (M), w;=2 (S;M and ML;), and w,=5
(S1SM, SySIM, MLy, MLyL,, andS;ML,).

VI. QUANTITATIVE MAPPING BETWEEN THE BIASED
SINAI DIFFUSION AND THE DIRECTED TRAP
MODEL

A. Renormalized landscape for the biased Brownian motion

The real space renormalization grot®SRG method can
also be applied to the biased Brownian landsd@p&3]. The
distributions of the barrier&=I"+¢ in the renormalized
landscape at scaleé are given by{2,13]

26
il

") 26 26
_1ex _fezar_l :ezsrex
(171

X 2
Pr(é)= oo

.. 20 26 25
Pr(&)——l_e_zérex _f—l_e_wF =26e )
(172

where the parameters2reads in terms of the notation$,5)

F
26=E-"0

T=5 173

As a consequence, the distributid?y- (&) of barriers

against the bias can be considered as infinitely large only in

the limit of vanishing biass—0. It is only in this limit that

all particles of the same thermal packet remain in the same

renormalized valley asymptotically.

() =([0(x)]") (174

are given by the recurrence
b y
0005 [ aye o ["aze Mopng, 21, (79
X a

with the initial conditionf,,—o(x)=1. In particular, the first
moment reads

b y
01(X)=,8L dyeBU(y)fa dze AV, (176

For the biased Brownian landscape, the exit time over a
barrierI" when starting at the bottom of a renormalized val-
ley that we choose as the origin can be obtaifext Fig. 2
by choosinga at the heightl" on the renormalized descend-
ing bond on the left and at a potential™ after the top of the
barrierI’. It seems that usuallj21] one chooseb exactly at
the top of the barrier to derive the Arrhenius factor, but we
think that to obtain the correct prefactor, one has to chdose
on the descending potentiafter the top to be sure that the
particle will not return in the trap where it started. Indeed,
when the particle sits just on the top, there is a finite prob-
ability to return to its starting trap, which is, for instance, a
probability 1/2 for a potential that is symmetric around its
top. So for a given realizatiovf of a renormalized valley, the
first moment of the escape time reads

0vi=8 [ ayer

0
f dze‘ﬁV(ZMJydze‘Bv(Z)},
a 0

77
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where the biased Brownian potentMd(x)= —Fx+U(X) Y
satisfies the constraints of a renormalized valley at sEale Fovi(D=7 {V}e v, (184
(see Fig. 2 it starts atvV(0)=¢, it then evolves on each side !

x>0 andx<0 in the presence of absorbing boundaries at Oyhere the trapping timé,{V} (178 depends mostly on the
andI’, and is conditioned to finish af=T" and not atvV  barrierI" via the usual Arrhenius fact@®", but also on the
=0. On the negative sidex=a is the random position details of the structure of the valley near the bottom and near
where the potential first hif. On the positive side, after the the top via the prefactaf179).

random positiod where the potential first hif, the poten-

tial again evolves in the presence of absorbing boundaries aic. pistribution of the trapping time of renormalized valleys

0 andI’, and is conditioned to finish at=0 at some ran- )
dom position called, and not atv=T". We are now interested in the distribution of the trapping

As usual for the problem of escape over a large barrier}ime 6.{V} over the ensemble of renormalized valleys exist-

the double integral177) is dominated by the saddi&y) is N9 in the renormaliz_ed ]andscape at scBleThe distribu-
maximal and where/(z) is minimal. For a renormalized ton of the barriers is given by Eq172). So we have to
valley (see Fig. 2, these regions arg~1{}), whereV(y) stulttjy the statistics of ﬂﬁ prefalftdfr?)a. o i
~_l“ and z~0, V\_/hereV(_z)~0. Thi_s saddle-point analysis ties E)Syn:ngel’igr?gn\/t?]gle;artﬁi(\;vr?l}ur\:\gtioném;r:,szlozrl/e(irsﬁ%;an -
yields the following leading behavior: Za=2,/(c?) so that '

01{V}=r_..7o(V)e"". (178 QBT
To(V)= 5 34122, (189
The prefactor is simply given by the product o°pB
7o(V) = BZsZy, (179 wherez; and z, are independent random variables whose

probability distributionP(z) is characterized in Appendix B

where Z, is the partition function of the infinitely deep PY itS Laplace transform
renormalized valley,

(Vs)*
F(1+p)1,02Vs)

wherel , is the Bessel function of index. In the renormal-
(180 ized landscape at scalg the probability distribution of the

trapping timer of the renormalized valleys thus reads, using

(186)

+ o
f dze 5 P(z)=
0

ZV: ||m

I—w

() (@)
JF dze‘BV*(z)ﬂLf Udze AV+@ |
0 0

where the random potentials

Eqg. (172,
V+(X):_FOX+ Ul(X), (181) + + o + o0
PF(T)=f d§25e’25§f dzlp(zl)f dz,P(z,)
0 0 0
V_(xX)=Fgx+Uy(x) (182
eB'+9)
are defined in terms of two independent Brownian trajecto- X6 T O_Z—B32122 (187

riesU4(x) andU,(x) (3) starting atv, (0)=e=V_(0). The
potentials V.. (x) evolves in the presence of absorbing

boundaries at 0 andf, a}Lnd are gonditioned to finish_évt _H_E f+ dzlzzfp(zl)f+ dz,(2,)"P(2,).
=TI and not atV=0. I{! andI{?) are the random times 7\ o?B%r) Jo 0
whereV.. , respectively, first hivv=T". (188

Similarly, the factorZg is the partition function of an
independent infinitely deep renormalized valley, which rep-
resents what happens in the vicinity of the top of the barrie
I' when considered with the chanyfe~ —V to transform it <p<l,
in a valley (see Fig. 2 For the biased Brownian landscape
considered here, by symmeti&j is simply an independent Zt= f dss 1 #(1—e 57, (189
realization of the variabl&,, . F(l_

The same saddle-point analysis may be applied to h|gher
moments given by the recurren¢E75) to obtain

So we have to compute the noninteger moment of ogdef
Ithe variablez. Using the integral representation valid for O

we obtain the moment from the Laplace transfdit86)

40 M + o
— Ar\n - = —l-u
ﬁn{V}F_mn!(TO(V)e . (183 fo dzZP(z) F(l—,U«)fo dss
: - : 1 (e |?
So for a given renormalized valley of barriEr the escape x| 11— (190
time t is distributed exponentially as in the trap model as F(1+p) 1,2\
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2M4ﬂJ g
W
T(1-w)
1
X | w2k~ 5 (191
L2(1+ w)4*wl? (w)

Using the Wronskian property of Bessel functions, and their
series expansion at small argument, we finally get

+ 0
fo dzZ‘P(z) FIG. 3. Hierarchical structure of the important valleys for a
particle starting at the origin. The barriers against the bias, which

a| ~2» 2u K.(a) are emphasized by the straight lines correspond to the depths of the
=—  lim L trap model represented in Fig. 1. The bottivhof the renormalized
| I 7 B r2(1+uw) u(a) valley that contains the origin at scdleis occupied with a weight
O(u°). The bottomL, of the next renormalized valley and the
_ 1 (192 bottom S; of the biggest subvalley befor®l are occupied with
r(1+uw)’ weightsO(w). The next-nearest renormalized valley, the big-

gest subvalleyt, betweenM andL,, and the second biggest sub-
The final result is thus that the distribution of trapping time valley S, beforeM are occupied with weights of ord€/(u?).
of the renormalized valleys existing at scdlereads, Eq.

(188), This length scaleb(t) exactly corresponds to the ratio
t“Cirap(m)/Csinai( 1) Of the constants appearing in the exact
wl e’ )“ 1 diffusion front of the two model$A24).
Pr(7)=— . (193
T\ o?B3r) T?1+p)

E. Usual RSRG in the limit p—0

It has been shown in Ref2] that the “effective dynam-
ics,” where at timet, the particle is typically at timéaround
the minimum of the renormalized valley containing the ini-

We have seen in the trap model that the distribution ofijal condition, is sufficient in the double limit—» §—0
renormalized traps dtreads, Eq(41), with

D. Precise choice of the renormalization scal€ as a function
of time

t)~ _
qt(7)=0(t<r)§(;) : (194 y=24I'(t) (199

fixed andX=x/T"?(t) fixed.

To make it exactly coincide with the distributi¢h93) of the ~ The limit y—0 corresponds to the symmetric Sinai diffu-
biased Sinai model, we have to choose the renormalizegion, whereas in the limig— o, the model becomes directed
scalel” of the landscape to be the following function of time: at large scale and the diffusion front converges tow$ds

L(t)=TIn{te®B[T?(1+u)]"}. (199 P(T|OO) - 005 e ¥Ib(0). (200

( )©
The RSRG method2] gives that the distribution of the
length .. of the descending renormalized bonds is simplyyherep(t) represents the mean length of renormalized de-

exponential in the limif’— oo scending bond§198). This limit actually corresponds to the
1 limit «— 0 of the exact Ley front[14,17,18 as described in
Pr(l4)= b_e—u/br, (196  Appendix.
r

F. Spreading of the thermal packet over

where the mean length reads )
many renormalized valleys

1 - 1 . The renormalized valleys of the Sinai model with bias are
b= > e =—0—e?", (197)  the analog of the traps in the directed mogisle Fig. 3. For
o(29) oB u—0, the bottom of the renormalized valley containing the

origin described above, E¢200 is the analog of the main
trap M described in Sec. Il.
At first order inw, as in Sec. lll A, there are the followin
T2t p) o 2('“) 253 two effects g ’
b(t)=bry=——7>—F"[te" B |=—FT[to"p"]". ' : . .
22 Next renormalized valley L. The main renormalized val-
(198 ley M at scalel'(t) has a trapping time,, that is distributed

so that it reads as a function of tinf&95) as
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as in the directed trap modéltl), since we have defined the was already known for the averaged diffusion frésge Ap-

relationI’(t) (195 by identifying the trapping-time distribu-

pendix A), but this also holds for the thermal wid(R8), for

tions of the two models. So there is a small probability (1all other rescaled thermal cumulani5), and for the long-
—e Y"m) that the particle has already escaped from thisange part of the two-point correlation functi¢go).

main renormalized at timet to jump into the next renor-
malized valleyL ;.

Moreover, the RSRG approadR] yields that the joint
distribution of the trapping time,, and of the positiongy,

The difference of the Sinai model with respect to the di-
rected trap model is thus the internal structure of a renormal-
ized valley that induces a dispersion over finite distances of

the particles that are in the same renormalized valley. We

andx, of the bottoms of the main renormalized valley and of now study the statistical properties of the biased Brownian

the the next renormalized valldy, reads

D, (XX ; 7m) = O(1<7y) B0 <X<X_)

w
"i . e ¥bg= (-0 (207)
™ * be(t)
=0(t<T7py)0(0<X<X)
N
ptt 1 e XL /b() (202

™ * b2(t)

which is the analog of Eq39). The only change is in the
prefactor in front oft* in the scaleb(t) (198).
Last decimated renormalized valley;,.SThe last deci-

mated barrier against the bias inside the main renormalized
valley between the origin and the bottom defines the last

decimated subvalle$,: it has a trapping time-s <t that is

not zero and thus there is a small probabigfy’ s, that the
particle is still trapped in the subvalley; at timet.

Moreover, the RSRG approadR] yields that the joint
distribution of the trapping time and of the positionxg
andx of the bottoms of the last decimated vall8y and of
the the main renormalized valléy reads

Ds, m(Xs,X; 75) = (1> 75) (0 <Xs<X)

M 1

w2 = —xb(ry)
7s b(t)b(7s)

e . (203

which is the analog of Eq46). The only change is again in
the prefactor in the scale(t) (198.

valleys.

VII. INTERNAL STRUCTURE OF THE TRAPS IN THE
BIASED SINAI DIFFUSION

A. Probability distribution inside a renormalized valley

The probability distribution of particles inside the same
renormalized valley can be obtained by generalizing the ap-
proach of the Sinai symmetric cafg|: for each realization
of a renormalized valley, it is given by the Boltzmann distri-
bution on this valley. So asymptotically &s+e, the prob-
ability distribution of the distance to the bottom of the
valley averaged over the environment reads

Pv(y>0)

e_BV+(y)
:F“m @ @ :
- f‘ dxe‘ﬁV+(X)+f' dxe AV-()

0 0

{Vihivo}
Pv(y<0)
e_ﬁv—(‘YD
= lim n 5 ,
[ f'(r) — BV, (X) f'(r) —BV_(X)
dxe P+ + dxe PV~

0 ° Vi hiV_}

(204)
where the random potentialé. satisfy the same conditions

as in Eq.(182.

The computation of the functional204) is given in Ap-
pendix B. It yields the nonintuitive result that the probability
distributionPy,(y) is actually symmetric iry— —y. The res-

Itis clear that this analysis may be generalized to furthelioration of this symmetry comes from the conditioning of the

orders inu.

G. Conclusion: Equivalence of the two large-scale
renormalized descriptions

The statistical properties of the spreading of the thermal
packet over many renormalized valleys and subvalleys inside
the main one are thus exactly the same as in the directed trap
model discussed in details in previous sections. In particular,
the localization parameterg, of the trap model represent

biased random walk to reach on each side. Its Laplace
transform reads, EQA17),

Py(p)= fo “due PPy(y)

1 fw (;> j

215 ) Jo 85, 0901,(9) fodZZ'”(Z)

coarse-grained localization parameters for the biased Sinai

diffusion: “at the same position” in the trap model means
“at a finite distance around the bottom of the same renormal-

Ku(s)

~ .(5)

Ku(2)— 1.(2) ], (205

ized valley” for the biased Sinai diffusion. As a consequence,
for all rescaled quantitieg/t*, the results are exactly the where the only factor containing the Laplace parameter is the

same up to the global prefactor in the schl¢) (199): this

index
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4T%p 2T?%p sponds to the algebraic decay ag®#/ So in the biased case,
=u+ > +0(p?). (2060 the distribution inside a renormalized valley is very narrow,
. contrary to the symmetric case.

V= ,u2+ p

For u>0, the series expansion in the Laplace parameter
thus regular leading to B. Localization parameters inside a renormalized valley
- 1 2T% For k particles that are in the same renormalized valley,
Pv(p=0)= 2 o D)+ (207) the localization parameters may be computed as an average
of the kth power of the local Boltzmann weight over the

All moments are thus finite, contrary to the symmetric casenfinitely deep biased Brownian valley482). Generalizing
w=0 [5], where the behavior as (\Jpc+---) corre- the approach of Ref5] to the biased case, we have

e~ BVlyD k

(Yk)ualleyezt JO Ocdy . (208)

+ o0 + o
f dxe*BV+(X)+f dxe AV-0
0 0

{vi v}

N3 f dgok—H(e~ o dxe Ay < f dye kﬁVe(Y)engdxeBVe(X)>_ (209

Using the result$A17) of the Appendix, we finally get

O_BZ) k=1 r4o0 (2 s 1
4 fo dSIfLTJOdZ£ |'M(Z)

C. Correlation function inside a renormalized valley

s 2pn—1
2

(KT?(1+p) 219

K
#u(z) .

Ku(z)— I s))

(Yk)valley: r

The correlation function of two particles at Boltzmann equilibrium in an infinitely deep biased Brownian valley reads

@ BVY)—BVy+l)

© © 2
(f dxe*BV+(X)+f dxeBV(X)>
0 0

oAV () -BV_(I-Y)
+2 [ dy ( (21)

Cualley(I >0)=2 :2+

2 )
f dxe BV+(X)+I dxe AV- (X))

where the averagé - -) is over the realizations\(, ,V_) satisfying Eq.(182.
Using the explicit results of Appendix A, we finally get

osl3l
R R Ku(s)
Cvalley(p)_mf s |2 2(s) f dzzyl, Zl)f dzzzz(K (2p) - () |M(Zz)) 0(z,—21)1,(21)
X | K (zp)— ”()|(z))+a(z 2, (z)(K(z) Kuls) (z)) —_
v\ £2 V() 2 17 £2)1,\ 42 v\ &1 V() V 1 F2(1+Iu,)
5"
ds Ku( ) z
XJO s 12(s) fdzzl z)( K.(2)— (s T5'» l,.(z )H (212
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VIIl. DISCUSSION OF THE UNIVERSALITY

We now briefly discuss the question of the universality.
The RSRG method that describes the large-scale structure at
scalel’ of the random potential is valid for all discrete mod-

els with random forcef2]. The parameter & that describes

the distribution of barriers against the drift at large scal
(172 may be expressed for a discrete random force model

the nonzero solution of the equati?|

e 29=1, (213

€

PHYSICAL REVIEW E 67, 046109 (2003

the thermal packet over many renormalized valleys. We have
shown how all observables can be computed via a series
expansion inu: at any given ordem", it is sufficient to
consider the spreading over atmostHid) traps. We have
given explicit rules for the statistical properties of these
traps. We have shown the exactness of these expansigns in
at%y comparing up to ordar=2 with the already known exact
fesults, such as the diffusion fropt4], the thermal width
[19], and the localization paramet¥, [20]. Our construc-
tion moreover gives a clear physical picture of the localiza-
tion properties in the anomalous diffusion phase, and ex-

which is known to determine the anomalous diffusion expo-lains the typical shape of the diffusion front in a given
nentu=248T [15,16. So for a given value of the parameters Sample obtained by numerical simulati¢Rig. 4 of Ref.

(26,0), the renormalized landscape at schlés universal.

However, it is clear from the analysis of the escape time

of a renormalized valley178 that the prefactof179 in

[20).
In a forthcoming papel22], we will adapt our method to
study the localization properties and the aging behavior in

front of the Arrhenius factoe?! is not universal: the parti- the symmetric(i.e., undirecteyl trap model which has at-
tion functionsZ, and Zg depend on the details over finite tracted a lot of interest recent23—-25. _ _
scales of the potential near a bottom of a renormalized valley For the field of biased diffusion in one-dimensional ran-

and near a top of a barrier.

dom potentials, it would be very interesting to study the in-

So for a potential that belongs to the universality clasdluence of correlations on the localization properties studied
(28,0), but that is not a biased Brownian at small scales, théiere for the Brownian case. In particular, the case of alge-
distribution of the trapping times in the renormalized land-braic correlationgU(x) —U(y))?~|x—y|? is known to give

scape at scal€ reads

Pr(r)=" (214

T

phyw
“(ﬁe ) (Z8)(ZB),

so that the quantitative mapping onto the trap made¥) is
realized for the choice of the RG scdleas a function oft
according to

re)=Th| —=——=—-|, 21
v B(zw’ﬂ(zg’“)”ﬂ] 219
which corresponds to the length scale
tM
b(t)=bpyy= (216

oB2u? BH(ZE)(ZE)

rise to a creep motion for @y<1 [26]. For DNA se-
guences, it seems that the interesting cases are not only the
Brownian casey=1 [9] but also the valuey>1 [27]. An-

other physically interesting case concerns the logarithmic
correlations, which give rise to a freezing transition in the
dynamics[28] as well as in the statid®9].

From the point of view of the RSRG method, since the
usual RSRG is asymptotically exact for infinite-disorder
fixed points[13], the extension introduced here can be seen
as a systematic expansion in the inverse disorder strength. It
can therefore be used for the classical random field Ising
chain in the presence of a small magnetic external fiéld
as well as in the field of random quantum spin chdit to
study the Griffiths phases. In particular, the RSRG decima-
tion rules are the same for the random walks with random
forces [2] and for the random transverse-field Ising spin
chain (RTFIC) [13] presenting random fields; and random

This shows that the factgu? is universal and comes from couplingsJ; vyith the following dictionary: the force$; of
the mean length of descending bonds in the renormalizete descending bonds correspond to Infi/ whereas the

landscape at large scale, whereas the fact¢l + u) of the

forcesf;" of the ascending bonds correspond to 13{L/The

biased Brownian motion is not universal and comes from th&xponent & defined in Eq(213), which is conserved by the
probability distribution of the partition function of a biased RG flow [Egs.(28) and(31) in Ref.[2]] exactly corresponds
Brownian valley(192). However, it is expected to be valid for the random transverse-field Ising spin chain to the RG-
for discrete models in the limit where the lattice constant isinvariant exponent & defined by[30]

very small as compared to the thermal lentk T?/o. For

the localization parameters and the correlation function of 2A
two particles inside the same renormalized valley, the discus- 1= (ﬁ) =g?A(nJI=Inh)

(217)

sion of the universality is the same as in the symmetric

case[5].

IX. CONCLUSIONS AND PERSPECTIVES

To study the anomalous diffusion phase t* of the di-

rected trap model and of the Sinai diffusion with bias, we

Of course, the interesting observables in the two models are
very different, so we will analyze elsewhdi&l] the physics
of the RTFIC for finiteA beyond the regimé& —0, where
the RSRG is asymptotically exakt3].
Finally, the expansion in the important traps for the dy-

have extended the usual RSRG method that assumes a falhmical models discussed in this paper has a static counter-
localization in a single valley to allow for the spreading of part with the following differences: in the static case, the
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expansion parameter is the temperaffirand the main trap +ie ds " +o dt
M corresponds to the absolute minimum of the random po- Luc(Y)=| o— sye =J Py
tential. We have already shown in RE32] for the toy model o o
consisting of a Brownian potential plus a quadratic potential, T
. . Mmoo T

how the thermal cumulants at first order Thcan be ex- Xexg —ity —ct”| cos—+isgnsir—| |,

. . . . . 2 2
plained by studying the statistical properties of the configu-
rations presenting two nearly degenerate minima. We will (AB6)

discuss in Refl33] in a more general context the structure of o )
the low-temperature series expansions in some disorderé¥® that the constarn appearing in the usual Fourier trans-

systems. form of Levy distributions,
+e dt ) ) g
ACKNOWLEDGMENT Lucy)= Eex —ity —Ct#| 1+i sgr(t)tanT
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early stage of this work and for his remarks on the manu-
script. reads in terms of the Laplace constant
APPENDIX A: USEFUL PROPERTIES OF THE LE VY Cc=ccos (A8)
DIFFUSION FRONT FOR 0 <p<1 2

In this appendix, we recall some useful properties of the L
, T ! . 2.L ff fi for th I
Levy distributions([14,34], and references thergin evy diffusion front for the trap mode

For a given trapr, the distribution of the escape tiniés

1. Definition and properties of one-sided Lgy stable laws exponential9), which yields after averaging over(10),

The rescaled sum

()= JO “drg(nf (1)

1

= 2}1 t; (A1) - f+oodv t) o, ml(d+p) A9)
a o v a v ¢ t:oo e
of n identical independent positive random variables distrib-
uted with a law presenting the algebraic decay For a given sample,,, ...), theprobability P,(n)
for the particle to be in the trap at timet reads
p(t):wt“”“’ (A2) Yoo
Pum=| 11 dtf,(t)
where 0< <1, has for limit distribution a;— the one-
sided Lavy law L, ¢(,:a)(Y) defined by its Laplace transform XO(totty+- -+t <t<tg+t;+---+tp).
oo (A10)
—SY] — a—Cs*
fo dye =L, c(y)=e ™, (A3) The average over the disorder
+ o0
and where the constantreads — -
Pi(n)= i[[o dtf.(t)
TA
(A= GnaaT 1+ ) (A4) X Oty ot -ty <t<ty ot +1y)
. . , ) (A11)
In this paper, we will only use the following series represen-
tation[14,34: shows that the diffusion front at large time is directly related
to the properties of the sum of a large numhesf indepen-
1 = c kr(1+ Ku) dent variableg; distributed with the law(A9) presenting an
LueW)=—— > | -= Tirk Snmuk, algebraic decayA2): the rescaled variablg=t/n'* is dis-
Y k=1 y- (1+k) . . . 2 Lo
(A5) tributed with a one-sided stable W distribution L stcypap()
(A3), where the constart;,,(«) reads for the caseA9)
which is convergent in the whole phase@.<1. and(A4),
We stress here that we have defined the consthytthe
Laplace transform{A3). Writing the inverse Laplace trans- _ M
Ctrap(l’«) = (A12)

form as a Fourier integral yields sinTu’
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The variableX=n/t*=y™#* is thus distributed with the law

fc(X)= L,.c(X™ ) (A13)

Mxl+ i

with the special valu€=Cy5,(1)-
In particular, the series expansi@A5) gives the follow-
ing series representation for the diffusion front:

+ oo

fc(X)= 7:—# g,l (_CX)kl%Sin’ﬂﬂk
o (_Cx)kfl

~CA —DIT (1K) (AL4)

Using the series expansion

1 +oo
m:“m; d(—1)Mz™ (A15)

with the first coefficient
di=ve, (A16)
2

dy=y 717—; (AL7)

whereyg denotes the Euler’s constant, we get the expansion

in u of the seriedA14) for fixed c,

fc(X)=ce [ (1—diu+dou®) +(diu—3du®)cX

+dou®(cX)?+0(u?)]. (A18)
Expanding also inu the value(A12)
2
™ 2 3
Curap() =1+ 5 u?+0(1%), (A19)

we get that the diffusion front reads up to second order,in

2

o
g(x):f#vctrap(ﬂ)(x):[l_dllu‘_F dz*‘? u? (e
772
+{diu— 3d2+? w? [ Xe X+ du?X%e X
+0(1?). (A20)

Using the numerical valug#\18), we finally get the expres-
sion (15) of the text.

3. Lévy diffusion front for the biased Sinai model

The exact form of the diffusion front was first determined

PHYSICAL REVIEW E 67, 046109 (2003

in Ref.[17]. The value of this constant has been proved in
Ref.[18] to have the following simple expression:

T

gt ———, A21
2I%(w)sinmp (A2))

Csinail )=

where we have used E¢A8).

In Ref. [14], the same form was conjectured from the
heuristic equivalence with the directed trap model via an
indentification of the parameters on some observable

2
X

T

E)M—_, (A22)
2] T2(u)sinmu

Csinai(M)

wherex;=2T?/ o and 7,=x3/(2D,) in terms of the diffu-
sion constanD, in the pure case. This expression indeed
coincides with Eq(A22) for the unitsT=1, o=3%, andD,
=1 used in Ref[18].

In the notations used in this papPp=T (4), this corre-
sponds to

a3? T
(0?B3)“ T (w)sinmu

To compare with the directed trap model, it is convenient
to consider the ratio of the two constarifsl2),

Csinail #) = (A23)

Csinai(/-’v)_ 0'32 1
Ctrap(/’«) _(0'2,83)'“ I‘Z(,u,).

(A24)

So beyond the natural dimensional factors, there is still a
function I'?(u) between the two models, whose origin will
be discussed in details in the text.

APPENDIX B: STATISTICS OF THE INTERNAL
STRUCTURE OF RENORMALIZED VALLEYS

1. Distribution inside a renormalized valley

To compute the functional®04), we generalize the ap-
proach developed in Ref5] for the symmetric casg=0.
We first exponentiate the denominator

in Ref.[15] for a corresponding discrete model. For the con-

tinuum model, the result has been proved in Theorem 1 of

Ref.[17], which states that for € u<1, the rescaled vari-
able X=x/t* for probability distribution(A13), where the

constanttg(w) is given by a complicated implicit expression

P.(y>0)= J:dqR;m)s:(y,q), (1)
P.(y<0)= f:dqR:m)s;(y,q), (82)
where
RE(q)E<exp{—qJ'|FdxeBVr(x) > ., (B3
0 V.
It

S;:(y,q)5<eﬁv+(y)ex%_qf dxefﬁvi(x) > .

0 v}
(B4)
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These two functionals may be expressed as

+ e - 1 +
Rr_(q):Nifo d|1IrT:)?F[_OI](F—E,||E), (BS)
. r + oo ) 1 .
Sf(y,q)=Ntf duf dlllm—zF[*O’F]
0 0 e—0€
X(I'—ellu)e P'Fr(uyle)  (B6)
in terms of the path integrals
N V(h=u 1 (1 [dVv 2
_ = —_— _
Fror(u,!lup) fv(o)_uoDV(x)ex 4UJ'de dx_FO)
[
—qfodxe‘ﬁv(x) OpriV(x)}, (B7)

where the symbo® o r1{V(x)} means that there are absorb-
ing boundaries avV=0 andV=I". The expansion of the
guadratic term of the measure yields

=+ _ 2 _ -~
Fior)(u.l|ug)=e ool R g 1y (u,lup), (B8)
where
v(h=u 17 (dv\2
F[o,r](U,||Uo)—L(O)_UODV(X)ex —EJde(&)
|
—qfodxe—BV(X) Opor{V(x)} (B9)

represents the analogous path integral for the symmetric

case. Its Laplace transform has been computed in(EELg)
of Ref.[5]. We get

N e+5l"
Ri(0)= —— (810
0
O'E( O’F,E)
and the Laplace transforms with respectyto
N + o0 . For r
SF(D,Q)EJ dye P'Sr(y,q)=——, f due AU
0 (o2 0
Fs F5
E O'U'E E u,I‘,p+E
X 2 Rl (B11)
elor, 2} gl oy p+ 2
¥ !40_ ) |p 40_

in terms of the function

PHYSICAL REVIEW E67, 046109 (2003
- E\ﬁeﬁum)
B BNo

2 /q _
XK(zlﬁ)\W(E\/;e Bvlz)

2 /q _
_K(zlﬁ)»m(ﬁ\/;e BU/z)

2 /q _
X'(z/w\%(ﬁ\[ge ﬁulz) _

The normalizationsV., are obtained with the conditions
Ri(q—0)=1,

E(u,v,p)= 5| 218515

(B12)

sinh T’

e
e 7.
1)

(B13)

+=0

We thus obtain that there is no dependence in the sidor

the functionalsRy- (q) andéﬁ(p,q). As a consequence, we
get the nonintuitive result that the probability distribution
Py(y) is symmetric iny— —y. The restoration of this sym-
metry comes from the conditioning of the random walk to
reachl’. We note that similarly, the distribution of the ran-
dom timesl | andl- are also the same, since we have, with
the notations of2]

Pr(¢=08) Ui(s) s+&%sinhsl
PE(£=0,00 U{(0) &sinhlys+ &2

The Laplace transform of the distribution inside a valley
thus reads

(B14)

ﬁ’v(p)Efo olye“’va(y>0)=f0 dqR;(a)S-(p,q),

(B15)
el
e 1 B Vo
Rw(q)—F(HM) (Z\ﬁ), (B16)
Y
éi(p,q)=—ﬁ A qlodzz
qr(1+ ) Jo
Nz
2 /q
WWE .
2 /q
X| Kuy(2)———F—="1.2)
2 /q
'“(E\[E)
(B17)
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The final result is thus given by E¢R05 of the text. oo
f dz,P(Zy)e =R (q)R,(q)
0

2. Partition function of a renormalized valley

2
We now consider the probability distribution of the parti- 1 \/a g
tion function of a renormalized valle§i80), 1 a ;
2 \ﬁ )
g Vo

B
where the potentials satisfy the constrai(it82). (B19)
Its Laplace transform can be directly expressed in terms
of the functions(B3), which we have computed before Eq. After the rescalingZ,=z,/(c8%), this corresponds to the
(B17), result(186) given in the text.

T(1+u)

+ o0 + %
zV:J dze*ﬁV—<Z>+j dze AV-(  (B19)
0 0 "
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